
STAT 231, Final Definitions and Theorems

Descriptive Statistics

Graphical Summaries

1. Histogram

Standard frequency histogram: height of the rectangle is the frequency or relative frequency.

Relative frequency histogram: height of the rectangle is relative frequency divided by the length of interval.

2. Empirical cumulative distribution function

3. Boxplots

q(0.75) + 1.5× IQR, q(0.75), q(0.5), q(0.25), q(0.25)− 1.5× IQR. (The upper(lower) line is placed at the
largest observed data value that is smaller than the value q(0.75) + 1.5× IQR).

4. Qqplots

Qqplots for checking Gaussian model. All points lie along a string line. Since the quantiles of the Gaussian
distribution change in value more rapidly in the tails of the distribution, we expect the points at both
ends of the line to lie further from the line.

5. Scatterplots

Numerical Summaries

1. Measure of location.

Sample mean

ȳ =
1

n

n∑
i=1

yi

Sample median

Sample mode: highest frequency.

2. Measure of dispersion or variability.

Sample variance

s2 =
1

n− 1

n∑
i=1

(yi − ȳ)2 =
1

n− 1

 n∑
i=1

y2
i −

1

n

(
n∑
i=1

yi

)2


Range: max - min

Interquantile range IQR = q(0.75)− q(0.25)

3. Measure of Shape

Sample skewness

g1 =

1

n

∑n
i=1(yi − ȳ)3[

1

n

∑n
i=1(yi − ȳ)2

]3/2

measures the lack of symmetry in the data. Long right tail: positive skewness, long left tail: negative
skewness

Sample kurtosis

g1 =

1

n

∑n
i=1(yi − ȳ)4[

1

n

∑n
i=1(yi − ȳ)2

]2

measures the heaviness of the tails and the peakedness of the data relative to data that are Normally
distributed.
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4. Sample quantiles and percentiles.

The 100pth sample percentile is determined as follows

• m = (n+ 1)p.

• If m is an integer and 1 ≤ m ≤ n, then q(p) = y(m).

• If m is not an integer but 1 < m < n, then determine the closest integer j such that j < m < j + 1
and q(p) = 1

2 [yj + yj+1].

5. Sample correlation

r =
Sxy√
SxxSyy

where

Sxx =

n∑
i=1

(xi − x̄)2 =

n∑
i=1

x2
i −

1

n

(
n∑
i=1

xi

)2

Sxy =

n∑
i=1

(xi − x̄)(yi − ȳ) =

n∑
i=1

siyi −
1

n

(
n∑
i=1

xi

)(
n∑
i=1

yi

)

Syy =

n∑
i=1

(yi − ȳ)2 =

n∑
i=1

y2
i −

1

n

(
n∑
i=1

yi

)2

6. Two-way table and Relative risk

For data
A Ā Total

B y11 y12 y11 + y12

B̄ y21 y22 y21 + y22

Total y11 + y21 y12 + y22 n

the relative risk of event A in group B as compared to group B̄ is

relative risk =
y11/(y11 + y12)

y21/(y21 + y22)

Statistical Inference

Point Estimation

Definition (Point estimates). A point estimate of a parameter is the value of a function of the observed data
y1, . . . , yn and other known quantities such as the sample size n.

Definition (Likelihood function). The likelihood function for θ is defined as

L(θ) = L(θ; y) = P (Y = y; θ).

Definition (Maximum likelihood estimate). The value of θ which maximizes L(θ) for given data y is called the
maximum likelihood estimate for θ. It is the value of θ which maximizes the probability of observing the data
y. This value is denoted θ̂.

Definition (Relative likelihood function). The relative likelihood function is defined as

R(θ) =
L(θ)

L(θ̂)
.

Definition (Log likelihood function). The log likelihood function is defined as

l(θ) = lnL(θ) = logL(θ)

Definition (Point estimator and sampling distribution). A point estimator θ̃ is a random variable which is a
function

θ̃ = g(Y1, . . . , Yn).

The distribution of θ̃ is called the sampling distribution of the estimator.
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Interval Estimation

Definition (Likelihood interval). A 100p% likelihood interval for θ is the set θ : R(θ) ≥ p.

Definition (Confidence interval). A 100p% confidence interval for a parameter is an interval estimate [L(y), U(y)],
for which

P [L(Y ) ≤ θ ≤ U(Y )] = p

where p is called the confidence coefficient.

The parameter θ is an unknown constant associated with the population. It is not a random variable
and therefore does not have a distribution. L(y), U(y) are numerical values not random variables. Hence
P{θ ∈ [L(y), u(y)]} makes no sense.

IMPORTANT: Suppose the experiment which was used to estimate a parameter was conducted a large
number of times and each time a 95% confidence interval for the parameter was constructed, then approximately
95% of these constructed intervals would contain the true, but unknown value of the parameter.

Definition (Pivotal Quantities). A pivotal quantity Q = Q(Y ; θ) is a function of the data Y and the unknown
parameter θ such that the distribution of the random variable Q is fully known. That is, probability statements
such that P (Q ≥ a) and P (Q ≤ b) depend on a and b but not on θ or any other unknown information.

Theorem. We can use pivotal quantity to construct confidence interval.

Proof. Let P [a ≤ Q(Y ; θ) ≤ b] = p where Q(Y ; θ) is a pivotal quantity whose distribution is completely known.
Suppose that we can re-express the inequality a ≤ Q(Y ; θ) ≤ b in the form L(Y ) ≤ θ ≤ U(Y ) for some functions
L and U . Then since

p = P [a ≤ Q(Y ; θ) ≤ b] = P [L(Y ) ≤ θ ≤ U(Y )]

= P (θ ∈ [L(Y ), U(Y )]),

the interval [L(y), U(y)] is a 100p% confidence interval for θ. The confidence coefficient θ does not depend on
θ. The confidence coefficient θ depends on a and b, and these are determined by the known distribution of
Q(Y ; θ).

Example (Confidence interval for the mean µ of a Gaussian distribution with known standard deviation σ).
Suppose Y = (Y1, . . . , Yn) is a random sample from the G(µ, σ) distribution where E(Yi) = µ is unknown but
sd(Yi) = σ is known. Since

Q = Q(Y ;µ) =
Ȳ − µ
σ/
√
n
∼ G(0, 1)

and G(0, 1) is a completely known distribution, Q is a pivotal quantity.

Example (Approximate confidence interval for Binomial model). For large n, denote Y =
∑n
i=1 Yi,

Qn = Qn(Y ; θ) =
Y − nθ

[nθ̃(1− θ̃)]1/2

where θ̃ = Y/n, is also close to G(0, 1). Thus

θ̂ ± a

√
θ̂(1− θ̂)

n

gives an approximate 100p% confidence interval for θ where p = P (−a ≤ Z ≤ a), Z ∼ G(0, 1).

Definition (The χ2 Distribution). The χ2(k) distribution is a continuous family of distributions on (0,∞) with
probability density function of the form

f(x; k) =
1

2k/2Γ(k/2)
x(k/2)−1e−x/2

where k ∈ {1, 2, . . .} is the degrees of freedom parameter.
For k = 2, the probability density function is the Exponential(2) probability density function.
For k > 2, the probability density function has maximum value at x = k − 2.
For k ≥ 30, the probability density function resembles that of a N(k, 2k) probability density function.

Theorem. If Z ∼ G(0, 1) then the distribution W = Z2 is χ2(1).
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Corollary. If W ∼ χ2(1) then P (W ≥ w) = 2[1− P (Z ≤
√
w)] where Z ∼ G(0, 1).

Definition (Student’s t distribution). Student’s t distribution has probability density function

f(t; k) = ck(1 +
t2

k
)−(k+1)/2

where the constant ck is given by

ck =
Γ(k+1

2 )
√
kπΓ(k2 )

The parameter k is called the degrees of freedom. The t probability density function is symmetric about the
origin, and for large values of k, the graph of the probability density function f(t; k) is indistinguishable from
that of the G(0, 1) probability density function.

Theorem. Suppose Z ∼ G(0, 1) and U ∼ χ2(k) independently. Let

T =
Z√
U/k

Then T has a Student’s t distribution with k degrees of freedom.

Theorem. If L(θ) is based on Y = (Y1, . . . , Yn), a random sample of size n, and if θ is the true value of the
scalar parameter, then the distribution of Λ(θ) converges to a χ2(1) distribution as n→∞ where

Λ(θ) = −2 log

[
L(θ)

L(θ̂)

]

Theorem. A 100p% likelihood interval is an approximate 100q% confidence interval where q = 2P (Z ≤√
−2 log p)− 1 and Z ∼ N(0, 1).

Proof. First,

{θ;R(θ) ≥ p} =

{
θ : − 2 log

[
L(θ)

L(θ̂)

]
≤ −2 log p

}
Then

P [Λ(θ) ≤ −2 log p] = P{−2 log

[
L(θ)

L(θ̂)

]
≤ −2 log p}

≈ P (W ≤ −2 log p) where W ∼ χ2(1)

= 2P (Z ≤
√
−2 log p)− 1 where Z ∼ N(0, 1)

as required.

Tests of Hypotheses

Definition (Null and alternative hypotheses). The default hypothesis is often referred to as the null hypothesis
and is denoted by H0. The alternative hypothesis is, in many cases, that H0 is not true.

Definition (Test statistic). A test statistic D is a function of the data Y that is constructed to measure the
degree of agreement between the data Y and the null hypothesis H0.

Definition (p-value). Suppose we use the test statistic D = D(Y ) to test the hypothesis H0. Suppose also
that d = D(y) is the observed value of D. The p-value or observed significance level of the test hypothesis H0

using test statistic D is
p− value = P (D ≥ d;H0)

Theorem (Relationship between hypothesis testing and interval estimation). Suppose we have data y, a model
f(y; θ) and we use the same pivotal quantity to construct a confidence interval for θ and a test for the hypothesis
H0 : θ = θ0. Then the parameter value θ = θ0 is inside a 100p% confidence interval for θ if and only if the
p-value for testing H0 : θ = θ0 is greater than 1− q.
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Statistical Models

Binomial

1. Likelihood function
L(θ) = θy(1− θ)n−y

θ̂ = y/n

2. Approximate Confidence interval

Pivotal Quantity

Qn = Qn(Y ; θ) =
Y − nθ[

nθ̃(1− θ̃)
]1/2 ∼ G(0, 1)

Interval

θ̂ ± a

√
θ̂(1− θ̂)

n

3. Likelihood Ratio Test of Hypothesis - One Parameter

Hypothesis
H0 : θ = θ0

Likelihood ratio statistic

Λ(θ0) = −2 log

[
L(θ0)

L(θ̃)

]
∼ χ2(1)

p-value
p-value = P [W ≥ λ] = 2[1− P (Z ≤

√
λ)]

Poisson

1. Likelihood function
L(θ) = θnȳe−nθ

θ̂ = ȳ

Geometric

1. Likelihood function

L(θ) =
1

θn

(
−

n∑
i=1

yi/θ

)
θ̂ = ȳ

Multinomial

1. Likelihood function

L(θ) =

k∏
i=1

θyii

θ̂i =
yi
n
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Gaussian

1. Likelihood function

L(θ) = L(µ, σ) = σ−n exp

[
− 1

2σ2

n∑
i=1

(yi − µ)2

]

µ̂ =
1

n

n∑
i=1

yi = ȳ

σ̂ = [
1

n

n∑
i=1

(yi − ȳ)2]1/2

2. Confidence interval

(a) Known standard deviation

Pivotal Quantity

Q = Q(Y ;µ) =
Ȳ − µ
σ/
√
n
∼ G(0, 1)

Interval
[ȳ − aσ/

√
n, ȳ + aσ/

√
n]

(b) Unknown σ

Pivotal quantity for µ

T =
Ȳ − µ
S/
√
n
∼ t(n− 1)

Confidence interval for µ
ȳ ± as/

√
n

Pivotal quantity for σ2

(n− 1)S2

σ2
=

1

σ2

n∑
i=1

(Yi − Ȳ )2 ∼ χ2(n− 1)

Confidence interval for σ2 [√
(n− 1)s2

b
,

√
(n− 1)s2

a

]
NOTE: The choice of a, b is not unique. For convenience, a and b are usually chosen such that

P (U ≤ a) = P (U ≥ b) =
1− p

2

3. Prediction Interval for a Future Observation

Pivotal quantity for future observation

Y − Ȳ

S
√

1 + 1
n

∼ t(n− 1)

Interval for future observation [
ȳ − as

√
1 +

1

n
, ȳ + as

√
1 +

1

n

]
4. Hypotheses testing

(a) Test of Hypothesis for µ

Hypothesis
H0 : µ = µ0

Test statistic

D =

∣∣Ȳ − µ∣∣
S/
√
n

p-value
p-value = P (D ≥ d;H0 = true) = P (|T | ≥ d) = 2[1− P (T ≤ d)]

This is called two-sided test. There is also one-sided test. Simply remove absolute sign in D, and
p− value = 1− P (T ≤ d).
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(b) Test of Hypothesis for σ

Hypothesis
H0 : σ = σ0

Test statistic

U =
(n− 1)S2

σ2
0

∼ χ2(n− 1)

p-value

• If u is large, that is P (U ≤ u) > 1/2,

p-value = 2P (U ≥ u)

• if u is small, that is P (U ≤ u) < 1/2,

p-value = 2P (U ≤ u)

Gaussian response model

Simple linear regression

Yi = G(µ(xi), σ) where µ(xi) = α+ βxi

1. Estimator

• Maximum likelihood estimators

β̃ =
Sxy
Sxx

α̃ = Ȳ − β̃x̄

σ̃2 =
1

n

n∑
i=1

(Yi − α̃− β̃xi)2

• Least square estimator, same as maximum likelihood estimators.

2. Confidence interval

• Distribution of the estimator β̃

β̃ ∼ G(β,
σ√
Sxx

)

Pivotal quantity to obtain confidence intervals for β

β̃ − β
Se/
√
Sxx
∼ t(n− 2)

Interval
β̂ ± ase/

√
Sxx

Hypothesis of no relationship
H0 : β = 0

Test statistic ∣∣∣β̃ − 0
∣∣∣

Se/
√
Sxx

p-value, T ∼ t(n− 2)

P

|T | ≥
∣∣∣β̂ − 0

∣∣∣
se/
√
Sxx
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• Confidence interval for the mean response µ(x) = α+ βx

Distribution

µ̃(x) ∼ G

µ(x), σ

√
1

n
+

(x− x̄)2

Sxx


Pivotal quantity

µ̃(x)− µ(x)

Se

√
1
n + (x−x̄)2

Sxx

∼ t(n− 2)

Interval

µ̂(x)± ase

√
1

n
+

(x− x̄)2

Sxx

• Prediction Interval for future response

Distribution

µ̃(x) ∼ G

µ(x), σ

√
1

n
+

(x− x̄)2

Sxx


Pivotal quantity

µ̃(x)− µ(x)

Se

√
1 + 1

n + (x−x̄)2

Sxx

∼ t(n− 2)

Interval

µ̂(x)± ase

√
1 +

1

n
+

(x− x̄)2

Sxx

3. Comparing mean of two population

S2
p =

(n1 − 1)S2
1 + (n2 − 1)S2

2

n1 + n2 − 2

(Ȳ1 − Ȳ2)− (µ1 − µ2)

Sp

√
1
n1

+ 1
n2

∼ t(n1 + n2 − 2)

(n1 + n2 − 2)S2
p

σ2
=

1

σ2

2∑
j=1

nj∑
i=1

(Yji − Ȳj)2 ∼ χ2(n1 + n2 − 2)

ȳ1 − ȳ2 ± asp
√

1

n1
+

1

n2

Goodness of git

1. Multinomial model

Λ = 2

k∑
j=1

Yj log

(
Yj
Ej

)

p-value = P (Λ ≥ λ;H0) ≈ P (W ≥ λ),W ∼ χ2(k − 1− p)

Pearson goodness of git statistic

D =

k∑
j=1

(Yj − Ej)2

Ej
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2. two way table

Likelihood ratio statistic

2

m∑
i=1

n∑
j=1

Yij log

(
Yij
Eij

)

Distribution is χ2((a− 1)(b− 1))
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