MATH 247 Calculus III, Final Definitions and Theorems
Proposition (9.4). ACR", f: A—= R, d@cint(A). Let T # 0 € R*. Suppose that (dzf)(@) exists. Then for
every o € R, the directional derivative (Oozf)(d), and

(Oawf)(@) = (05 f)(a)

Proof. If a = 0, then the equation becomes 0 = 0.
Assume a # 0. Denote av' = w. Then

lim
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Proposition (9.8). ACR", f: A— R, d € int(A). Suppose (0zf)(a@) exists for all T € bR™, and that we have
(Add) property. Then for every v € R™, we have

(Os.f)(@) = (v, (Vf)(@))
Proof. Fix 7= (v, --- ,0(™) € R”, and write ¢ = v(Vé&; + --- 4+ v(™¢,. Then
(05)(@) = (s, 4...vma, (@)
= (Oye f)(@) + - -+ + (Fymen [)(a)
= oD (01 )(@) + - + 0 (0,/)(@)
= (7, (Vf)(@))
O

Proposition (10.2). A€ R”, f: A > R, d € int(A), ¥ € R" and suppose that (0zf)(@) exists. If @ is a point
of local extremum for f, then (0zf)(@) = 0.

Proof. Assume that @ is a local minimum. Let r > 0 be such that B(d@,r) C A and f(a@) < f(Z) for all
ZeB(d,r). Let ¢ = Then have @ + tv € B(d,r), Vt € (—c¢,c). Define h: (—¢,¢c) = R
h(t) = f(a+ tv)

=h

For every t € I, we have h(t) = f(d@+ tv) > f(d)
Then we have

_r
T+ 7]

(0). Hence 0 is a point of minimum for » on I.

. h(t)=nh(0) . fl@+tv) - f(a@) o

Mo ST 0@
Since (0zf)(@) exists, then the left hand side must exist as well. Then h’(0) = (05 f)(a@). Since h'(0) exists
and 0 is a point of minimum, then A'(0) = 0. So (97 f)(@) = 0, as required. O

Theorem (10.5). A C R™ open. f: A — R. & # 0 € R™. Suppose that (J5f)(d@) exists at every @ € A. Let
Z,y € A be such that Co(Z,y) C A and such that § — T = a¥ for some o € R. Then 3b € Co(Z,y) such that

1) = £(@) = o (051)() = (9a01)(B)
Proof. Will assume o« # 0. Define ¢(t) = f((1 — t)Z + tg). Idea is to use MVT from calculus I on .
Claim 1.
(2). (0) = f(7), (1) = f(7).
(b). For every t € [0,1], ¢ is differentiable at ¢ with ¢’(t) = a(9zf)((1 — t)Z + ti).
Verif of Claim 1.
(a) .....

(b) Fix tp € [0,1] where we check the differentiability of ¢. Denote (1 — t9)Z + toff = @ € A. Look
at the newton quotient %)_“p(t‘)), with h # 0 such that to + h € [0,1]. Then we have ¢(ty) = f(d).
(to + h) = f(d— hd + hy) = f(d + hat). So

lim o(to +h) — p(to)
h—0 h




Hence ¢'(tp) exists and has the claimed formula.
Claim 2. 3¢ € (0,1) such that ¢(1) — p(0) = ¢'(c).
Verif of Claim 2.
 is continuous at every ¢ € [0, 1], since ¢ is differentiable at every t € [0, 1].
Claim 3. 3b € Co(&,7) such that f(§) — f(Z) = a - (95f)(b).
Verif of claim 3.
Take ¢ € (0,1) as in claim 2. put b = (1—c¢)Z+cif. Then f(7)— f(Z) = ¢(1)—@(0) = ¢'(c) = a-(05f)(b). O

Theorem (11.3). A CR", f € C1(A,R). Then for every @ € A we have
(L — Approx) lim

/(%) — f(@) — (¥ —a, (Vf)(@))|
@ |

—a || Z—d|

=0

Corollary (11.4). A C R™ open, f € CY(A,R), @ € A. Then for every ¥ € R™, the directional derivative
(0z1)(@) exists, and have (0zf)(a@) = (T, (Vf)(@)).

Proof. In (L-Approx) we pick & of the form @ + ¢t¥. Then & — @ be comes t — 0.
Then multiply the limit by || 7|

o @+ 40) = (@) — (@ +19) — @, (V@)
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Corollary (11.5). A CR" open, f € C*(A,R), @ € A. The directional derivatives at @ have (Add) property.

Lemma (11.6). A CR" open, f € CY(A,R), @ € R. Pickr > 0 such that B(a@,r) C A. Then for every T €
B(a,r) we can find by, -- b, € B(@,r) such that f(Z) — f(@) = (T —a, W) with @ = ((01f)(b1), -+, (Onf)(bn)).

Proof. Fix & € B(d,r). Consider vectors Ty, &1, - , &y, defined as follows:
Yo =ad = (a(l),--- ,a("))
fl —qa= (1'(1), Ce ’a(”))
fz =q= (m(l)’x(2)7 e )a(n))
Gnmd= (@, 2y = 7
Note that for every 1 <i <n we have ||Z; —d|| < ||Z —d|| <r. Hence Zo,Z1,--- ,%, € B(d,r) C A.

Claim for every 1 < < n there exists b; € Co(#;_1,Z;) such that

F@) = (&) = f(#) = (@9 = al)(0,£)(5:)
Verification of the claim.
Ty — Ti—1
=z —a®y. g

Apply MVT in direction &; with endpoints Z;_; and Z;, then Jb; € Co(Z;—1,%;) such that f(&;) — f(Zi—1) =
(2@ —a)(8;f)(b;). Done with claim.



Then

where @ = ((O1f)(b1), -+ , (Onf)(bn))- m
Proof of Theorem 11.3. Given € > 0, we want to find 6 > 0 such that B(d@, ) C A and such that

/(&) = f(@) = (& —a, (Vf)@))|
|

|7 —al

(Want) <e

for all Z € B(@,0) \ {a}.
Fix ro > 0 such that B(d,rg) € A. For every 1 < i < n, we know that 0;f is continuous at @ hence
30 < r; < rg such that for all ¥ € B(d, r;) we have

1(8:0)(7) — (8:0)(@)| < %

Put § = min(ry,--- ,7,). Claim 6 is good for (Want).
Verification of claim. Pick Z € B(@, ) \ {a} for which we prove that

(Want’) — |f(@) — f(@@| - (& —a, (Vf)(@)) <el|7—all.
Lemma 11.6 gives us points bi,-+ by € B(d,d) such that
f@—a)=(T-d,w)

where @ = ((51f)(51), e ,(87zf)(5n))~

Then
|f(Z) — fal - (¥ —a, (Vf)a))
=@ —d,d) - (@—a, (Vf)(@))]
=|{Z—a,d—(Vf)a))l
<[[Z—=all-[l@— (Vf)(@)]ll
<[|Z—dll-||@ - (Vf)(@) |l

—

=l|#-all-3 |0 E) - 0@

m
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O
Theorem (13.2). A C R" open, f € CY(A,R). Let I C R be an open interval and let v: I — R™ be a
differentiable path such that y(t) € A for allt € I. Define u: I — R by u(t) = f(v(t)) Then u is differentiable
with
u'(t) = ((VH(r(B), 7'(8))
Proof. Fix tg € I for which we will prove that the Chain Rule holds. So we need

- u(t) — uft)
t—to t—to

={(VH)(7(to)), ¥ (to))



We will do this limit by sequence. Let (t)52, in I such that t; — to. Will show that

L uft) — u(t)
k—o0 tr — 1o

= (V) (7(t0)), ' (t0))

Denote ¥(tg) = @ € A, y(ty) =t € A, Yk € N. Then (#4){, is a sequence in A.
Claim 1. We have &), — @, and moreover that

Verif of Claim 1. For every k € N we have

B, =(te) = (VD (t), - A ()

where 41 ..M T R are differentiable, hence continuous.
When k — oo, get 7 (tx) = 7D (to). So T — (YD (tg), -, 7™ (to)). Hence &) — @ as needed.
Moreover,

1 (fk_a):(7(1)(tk)—7(1)(t0) 7(")(ltk)—’7(")(lt0))_>

te —to b—to 1 ti—to (YD) (t0), -+ (v (t)) = (to)

Claim 2. Pick r» > 0 such that B(d@,r) C A, and pick kg € N such that Z € B(d,r) for all k > ko. Then for
every k > ko have Co(d, #)) C A, and we can find b, € Co(a, Zx) such that

1
"ty —to

u(ty) — ulto)

L (VB

(@ — a))

Verif of Claim 2. Application of MVT. .

Claim 3. Let (b)32, be as in Claim 2. Then 0} — @, and therefore (V f)(by) = (Vf)(a).

Verif of Claim 3. For every k > ko we have by, € Co(a@, @), have ||by — @|| < || & — @||. By squeeze
theorem b, — @. Then for every 1 < i < n get (0;f)(bx) — (9:f)(@) because 9;f is continuous on A. Then
(V) (be) = (Vf)(@).

Claim 4. We have

lim u(ty) — ulto)
k—o0 tr — to

Verif of Claim 4. Have (Vf)(b) — (V)(@)

= ((V)(7(to)) , 7' (o) )

kILI& tr —to (fk Bl L_i) - ’Y/(tO)
So )
(VA —5- (@ = @) = (V@ Y ())
Since
u(ty) — u(to) - 1 .
g = (DB, (@ - D)
’ then

O

Proposition (16.4). A # 0 in M,,. Let A’ and A" be two divisions of A. Then exists division T’ of A such
that T < A" and T < A”.

Proof. Write A’ = {A},--- AL}, A" ={A],--- A’}
Put ' = {A;NA7|1<i<r1<j<s AJUA] #0} O

Lemma (16.7). A € M,, f: A — R bounded. Let AT be divisions of A such that T' < A. Then we have
U(f,T) <U(F,A) and L(f,T) > L(f, A).



Proof. Will prove the inequality for upper sums. Let A = {A4;,--- A, }. I ={B11,---Big, -+ ,Br1, - Brg.}
where B; 1 U---UB,; 4 =A4;,1<14
legr.

Then

.,
2
<
<
S

Proposition (17.1). A€ M,,. f: A — R bounded. The set of real numbers
T ={U(f,A) | A division of A}

18 bounded from below, so has an inf. o B
The number inf(T) € R is called the upper integral of f on Am denoted as fAf or fAf(f)d:?,
The set of real numbers
S ={L(f,A) | A division of A}

s bounded from above, so has an sup.
The number sup(S) € R is called the lower integral of f on Am denoted as qu or iAf(f)df.

One hasiAfSTAf

Proof. Fix a division if A” of A then L(f,A”) is a lower bound for T' = {U(f,A’) | A’ division of A}. Hence
T is bounded below with inf(T) > L(f, A”). O

Theorem (17.3). A€ M, f: A — R bounded. Then TFAE

1. f is integrable on A.
2. for every e > 0 there exists a division A of A such that U(f,A) — L(f,A) <e.
3. There exists a sequence (Ay)%2, of divisions of A such that U(f,Ay) — L(f, Ag) — 0.

Proof. Will prove (1) — (2). Others are left as exercises.

Denote [, f = I. So have iAf =1= TAf. Given € > 0, we need to find a division A of A such that
U(f,A)—L(f,A) <e.

The idea is to find A’ such that I < U(f,A’) < I+ ¢/2. Find A” such that I —¢/2 < L(f,A”) < I. Then
let A < A" and A < A”. Then we find such A. O

Proposition (19.1). Let A be a non-empty set in M,,, and let f be a function in Int,(A,R). Let B € M,, be
such that B 2D A, and let g: B — R be defined by

. f@ zreA
9(%) = o
0 if ¥ € B\ A.
Then f € Inty(B,R) and [,9= [, f.
Corollary (19.2). Suppose that A, B € M,, such that A C B. Let I4: B — R be the indicator function defined
by
. 1 ifreA
IA(Z) = .f_,
0 fZeB\A
Then I € Inty(B,R), and [, 14 = vol(A).

Corollary (19.3). Suppose that Ay, Az, --- , Ap € M,, are non-empty sets in My, such that A;NA; = fori# j.
Suppose moreovef that we are given some functions fi € Inty(A1,R),--- f, € Inty(Ap,R). Consider the union
A=A1U---UA,, and let f: A — R be defined by

f1(@) if £ e Ay
J@ =1
Jol@) if T € Ay

Then f € Inty(A,R) and fAf:fAl f1+"'+pr -



