MATH 247 Calculus III, Final Definitions and Theorems

Proposition (9.4). $A \subseteq \mathbb{R}^n$, $f: A \to \mathbb{R}$, $\vec{a} \in int(A)$. Let $\vec{v} \neq \vec{0} \in \mathbb{R}^n$. Suppose that $(\partial_{\vec{v}} f)(\vec{a})$ exists. Then for every $\alpha \in \mathbb{R}$, the directional derivative $(\partial_{\alpha \vec{v}} f)(\vec{a})$, and

$$(\partial_{\alpha \vec{v}} f)(\vec{a}) = \alpha (\partial_{\vec{v}} f)(\vec{a})$$

Proof. If $\alpha = 0$, then the equation becomes 0 = 0. Assume $\alpha \neq 0$. Denote $\alpha \vec{v} = \vec{w}$. Then

$$\lim_{t \to 0} \frac{f(\vec{a} + t\vec{w}) - f(\vec{a})}{t}$$
$$= \lim_{t \to 0} \frac{f(\vec{a} + t\alpha\vec{v}) - f(\vec{a})}{t\alpha} \alpha$$
$$= \lim_{s \to 0} \frac{f(\vec{a} + s\vec{v}) - f(\vec{a})}{s} \alpha$$
$$= (\partial_{\vec{v}}f)(\vec{a}) \cdot \alpha$$

Proposition (9.8). $A \subseteq \mathbb{R}^n$, $f: A \to \mathbb{R}$, $\vec{a} \in int(A)$. Suppose $(\partial_{\vec{v}} f)(\vec{a})$ exists for all $\vec{v} \in bR^n$, and that we have (Add) property. Then for every $\vec{v} \in \mathbb{R}^n$, we have

$$(\partial_{\vec{v}}f)(\vec{a}) = \langle \vec{v}, (\nabla f)(\vec{a}) \rangle$$

Proof. Fix $\vec{v} = (v^{(1)}, \cdots, v^{(n)}) \in \mathbb{R}^n$, and write $\vec{v} = v^{(1)}\vec{e}_1 + \cdots + v^{(n)}\vec{e}_n$. Then

$$\begin{aligned} (\partial_{\vec{v}}f)(\vec{a}) &= (\partial_{v^{(1)}\vec{e}_{1}+\dots+v^{(n)}\vec{e}_{n}}f)(\vec{a}) \\ &= (\partial_{v^{(1)}\vec{e}_{1}}f)(\vec{a}) + \dots + (\partial_{v^{(n)}\vec{e}_{n}}f)(\vec{a}) \\ &= v^{(1)}(\partial_{1}f)(\vec{a}) + \dots + v^{(1)}(\partial_{n}f)(\vec{a}) \\ &= \langle \vec{v}, \, (\nabla f)(\vec{a}) \rangle \end{aligned}$$

Proposition (10.2). $A \in \mathbb{R}^n$, $f: A \to \mathbb{R}$, $\vec{a} \in int(A)$, $\vec{v} \in \mathbb{R}^n$ and suppose that $(\partial_{\vec{v}} f)(\vec{a})$ exists. If \vec{a} is a point of local extremum for f, then $(\partial_{\vec{v}} f)(\vec{a}) = 0$.

Proof. Assume that \vec{a} is a local minimum. Let r > 0 be such that $B(\vec{a}, r) \subseteq A$ and $f(\vec{a}) \leq f(\vec{x})$ for all $\vec{x} \in B(\vec{a}, r)$. Let $c = \frac{r}{1+||\vec{v}||}$. Then have $\vec{a} + t\vec{v} \in B(\vec{a}, r)$, $\forall t \in (-c, c)$. Define $h: (-c, c) \to \mathbb{R}$

$$h(t) = f(\vec{a} + t\vec{v})$$

For every $t \in I$, we have $h(t) = f(\vec{a} + t\vec{v}) \ge f(\vec{a}) = h(0)$. Hence 0 is a point of minimum for h on I. Then we have

$$\lim_{t \to 0} \frac{h(t) - h(0)}{t - 0} = \lim_{t \to 0} \frac{f(\vec{a} + t\vec{v}) - f(\vec{a})}{t} = (\partial_{\vec{v}}f)(\vec{a})$$

Since $(\partial_{\vec{v}} f)(\vec{a})$ exists, then the left hand side must exist as well. Then $h'(0) = (\partial_{\vec{v}} f)(\vec{a})$. Since h'(0) exists and 0 is a point of minimum, then h'(0) = 0. So $(\partial_{\vec{v}} f)(\vec{a}) = 0$, as required.

Theorem (10.5). $A \subseteq \mathbb{R}^n$ open. $f: A \to \mathbb{R}$. $\vec{v} \neq \vec{0} \in \mathbb{R}^n$. Suppose that $(\partial_{\vec{v}} f)(\vec{a})$ exists at every $\vec{a} \in A$. Let $\vec{x}, \vec{y} \in A$ be such that $\operatorname{Co}(\vec{x}, \vec{y}) \subseteq A$ and such that $\vec{y} - \vec{x} = \alpha \vec{v}$ for some $\alpha \in \mathbb{R}$. Then $\exists \vec{b} \in \operatorname{Co}(\vec{x}, \vec{y})$ such that

$$f(\vec{y}) - f(\vec{x}) = \alpha \cdot (\partial_{\vec{v}} f)(\vec{b}) = (\partial_{\alpha \vec{v}} f)(\vec{b})$$

Proof. Will assume $\alpha \neq 0$. Define $\varphi(t) = f((1-t)\vec{x} + t\vec{y})$. Idea is to use MVT from calculus I on φ . Claim 1.

(a). $\varphi(0) = f(\vec{x}), \varphi(1) = f(\vec{y}).$

(b). For every $t \in [0, 1]$, φ is differentiable at t with $\varphi'(t) = \alpha(\partial_{\vec{v}} f)((1-t)\vec{x} + t\vec{y})$.

Verif of Claim 1.

(a)

(b) Fix $t_0 \in [0,1]$ where we check the differentiability of φ . Denote $(1-t_0)\vec{x} + t_0\vec{y} = \vec{a} \in A$. Look at the newton quotient $\frac{\varphi(t_0+h)-\varphi(t_0)}{h}$, with $h \neq 0$ such that $t_0 + h \in [0,1]$. Then we have $\varphi(t_0) = f(\vec{a})$. $\varphi(t_0 + h) = f(\vec{a} - h\vec{x} + h\vec{y}) = f(\vec{a} + h\alpha\vec{v})$. So

$$\lim_{h \to 0} \frac{\varphi(t_0 + h) - \varphi(t_0)}{h}$$

$$= \lim_{h \to 0} \frac{f(\vec{a} + h\alpha \vec{v}) - f(\vec{a})}{h\alpha} \cdot \alpha$$
$$= \alpha \cdot (\partial_{\vec{v}} f)(\vec{a})$$

Hence $\varphi'(t_0)$ exists and has the claimed formula.

Claim 2. $\exists c \in (0, 1)$ such that $\varphi(1) - \varphi(0) = \varphi'(c)$. Verif of Claim 2. φ is continuous at every $t \in [0, 1]$, since φ is differentiable at every $t \in [0, 1]$. Claim 3. $\exists \vec{b} \in \operatorname{Co}(\vec{x}, \vec{y})$ such that $f(\vec{y}) - f(\vec{x}) = \alpha \cdot (\partial_{\vec{v}} f)(\vec{b})$. Verif of claim 3. Take $c \in (0, 1)$ as in claim 2. put $\vec{b} = (1 - c)\vec{x} + c\vec{y}$. Then $f(\vec{y}) - f(\vec{x}) = \varphi(1) - \varphi(0) = \varphi'(c) = \alpha \cdot (\partial_{\vec{v}} f)(\vec{b})$.

Theorem (11.3). $A \subseteq \mathbb{R}^n$, $f \in C^1(A, \mathbb{R})$. Then for every $\vec{a} \in A$ we have

(L – Approx)
$$\lim_{\vec{x} \to \vec{a}} \frac{|f(\vec{x}) - f(\vec{a}) - \langle \vec{x} - \vec{a}, (\nabla f)(\vec{a}) \rangle|}{||\vec{x} - \vec{a}||} = 0$$

Corollary (11.4). $A \subseteq \mathbb{R}^n$ open, $f \in C^1(A, \mathbb{R})$, $\vec{a} \in A$. Then for every $\vec{v} \in \mathbb{R}^n$, the directional derivative $(\partial_{\vec{v}} f)(\vec{a})$ exists, and have $(\partial_{\vec{v}} f)(\vec{a}) = \langle \vec{v}, (\nabla f)(\vec{a}) \rangle$.

Proof. In (L-Approx) we pick \vec{x} of the form $\vec{a} + t\vec{v}$. Then $\vec{x} \to \vec{a}$ be comes $t \to 0$.

Then multiply the limit by $||\,\vec{v}\,||$

$$\begin{split} \lim_{t \to 0} \frac{|f(\vec{a} + t\vec{v}) - f(\vec{a}) - \langle (\vec{a} + t\vec{v}) - \vec{a}, (\nabla f)(\vec{a}) \rangle|}{||\vec{a} + t\vec{v} - \vec{a}||} \cdot ||\vec{v}|| = 0 ||\vec{v}|| = 0 \\ \lim_{t \to 0} \left| \frac{f(\vec{a} + t\vec{v}) - f(\vec{a}) - t\langle \vec{v}, (\nabla f)(\vec{a}) \rangle}{t} \right| = 0 \\ \lim_{t \to 0} \left| \frac{f(\vec{a} + t\vec{v}) - f(\vec{a})}{a} - \langle \vec{v}, (\nabla f)(\vec{a}) \rangle \right| = 0 \\ \lim_{t \to 0} \frac{f(\vec{a} + t\vec{v}) - f(\vec{a})}{a} = \langle \vec{v}, (\nabla f)(\vec{a}) \rangle \end{split}$$

Corollary (11.5). $A \subseteq \mathbb{R}^n$ open, $f \in C^1(A, \mathbb{R})$, $\vec{a} \in A$. The directional derivatives at \vec{a} have (Add) property.

Lemma (11.6). $A \subseteq \mathbb{R}^n$ open, $f \in C^1(A, \mathbb{R})$, $\vec{a} \in \mathbb{R}$. Pick r > 0 such that $B(\vec{a}, r) \subseteq A$. Then for every $\vec{x} \in B(\vec{a}, r)$ we can find $\vec{b}_1, \cdots, \vec{b}_n \in B(\vec{a}, r)$ such that $f(\vec{x}) - f(\vec{a}) = \langle \vec{x} - \vec{a}, \vec{w} \rangle$ with $\vec{w} = ((\partial_1 f)(\vec{b}_1), \cdots, (\partial_n f)(\vec{b}_n))$. *Proof.* Fix $\vec{x} \in B(\vec{a}, r)$. Consider vectors $\vec{x}_0, \vec{x}_1, \cdots, \vec{x}_n$, defined as follows:

$$\vec{x}_{0} = \vec{a} = (a^{(1)}, \cdots, a^{(n)})$$
$$\vec{x}_{1} = \vec{a} = (x^{(1)}, \cdots, a^{(n)})$$
$$\vec{x}_{2} = \vec{a} = (x^{(1)}, x^{(2)}, \cdots, a^{(n)})$$
$$\cdots$$
$$\vec{x}_{n} = \vec{a} = (x^{(1)}, \cdots, x^{(n)}) = \vec{x}$$

Note that for every $1 \le i \le n$ we have $||\vec{x}_i - \vec{a}|| \le ||\vec{x} - \vec{a}|| < r$. Hence $\vec{x}_0, \vec{x}_1, \cdots, \vec{x}_n \in B(\vec{a}, r) \subseteq A$. Claim for every $1 \le i \le n$ there exists $\vec{b}_i \in Co(\vec{x}_{i-1}, \vec{x}_i)$ such that

$$f(\vec{x}_i) - f(\vec{x}_i) - f(\vec{x}_{i-1}) = (x^{(i)} - a^{(i)})(\partial_i f)(\vec{b}_i)$$

Verification of the claim.

$$\vec{x}_i - \vec{x}_{i-1}$$

$$= (x^{(i)} - a^{(i)}) \cdot \vec{e}_i$$

$$= \alpha \vec{e}_i$$

Apply MVT in direction $\vec{e_i}$ with endpoints $\vec{x_{i-1}}$ and $\vec{x_i}$, then $\exists \vec{b_i} \in \text{Co}(\vec{x_{i-1}}, \vec{x_i})$ such that $f(\vec{x_i}) - f(\vec{x_{i-1}}) = (x^{(i)} - a^{(i)})(\partial_i f)(\vec{b_i})$. Done with claim.

Then

$$f(\vec{x}) - f(\vec{a}) = f(\vec{x}_m) - f(\vec{x}_0)$$

= $f(\vec{x}_m) - f(\vec{x}_{m-1}) + \dots + f(\vec{x}_1) - f(\vec{x}_0)$
= $\sum_{i=1}^m f(\vec{x}_i) - f(\vec{x}_{i-1})$
= $\sum_{i=1}^m (x^{(i)} - a^{(i)})(\partial_i f)(\vec{b}_i)$
= $\langle \vec{x} - \vec{a}, \vec{w} \rangle$

where $\vec{w} = ((\partial_1 f)(\vec{b}_1), \cdots, (\partial_n f)(\vec{b}_n)).$

Proof of Theorem 11.3. Given $\epsilon > 0$, we want to find $\delta > 0$ such that $B(\vec{a}, \delta) \subseteq A$ and such that

(Want)
$$\frac{|f(\vec{x}) - f(\vec{a}) - \langle \vec{x} - \vec{a}, (\nabla f)(\vec{a}) \rangle|}{||\vec{x} - \vec{a}||} < \epsilon$$

for all $\vec{x} \in B(\vec{a}, \delta) \setminus \{\vec{a}\}$.

Fix $r_0 > 0$ such that $B(\vec{a}, r_0) \subseteq A$. For every $1 \leq i \leq n$, we know that $\partial_i f$ is continuous at \vec{a} hence $\exists 0 \leq r_i \leq r_0$ such that for all $\vec{y} \in B(\vec{a}, r_i)$ we have

$$|(\partial_i f)(\vec{y}) - (\partial_i f)(\vec{a})| < \frac{\epsilon}{n}$$

Put $\delta = \min(r_1, \cdots, r_n)$. Claim δ is good for (Want).

Verification of claim. Pick $\vec{x} \in B(\vec{a}, \delta) \setminus \{a\}$ for which we prove that

$$(\text{Want}') \qquad |f(\vec{x}) - f(\vec{a}) - \langle \vec{x} - \vec{a}, (\nabla f)(\vec{a}) \rangle < \epsilon || \vec{x} - \vec{a} ||$$

Lemma 11.6 gives us points $\vec{b}_1, \dots, \vec{b}_n \in B(\vec{a}, \delta)$ such that

$$f(\vec{x} - \vec{a}) = \langle \vec{x} - \vec{a}, \vec{w} \rangle$$

where $\vec{w} = ((\partial_1 f)(\vec{b}_1), \cdots, (\partial_n f)(\vec{b}_n)).$ Then

$$\begin{split} &|f(\vec{x}) - f(\vec{a}| - \langle \vec{x} - \vec{a} , (\nabla f)(\vec{a}) \rangle \\ &= |\langle \vec{x} - \vec{a} , \vec{w} \rangle - \langle \vec{x} - \vec{a} , (\nabla f)(\vec{a}) \rangle | \\ &= |\langle \vec{x} - \vec{a} , \vec{w} - (\nabla f)(\vec{a}) \rangle | \\ &\leq ||\vec{x} - \vec{a}|| \cdot ||\vec{w} - (\nabla f)(\vec{a})|| \\ &\leq ||\vec{x} - \vec{a}|| \cdot ||\vec{w} - (\nabla f)(\vec{a})|| \\ &= ||\vec{x} - \vec{a}|| \cdot \sum_{i=1}^{m} \left| (\partial_i f)(\vec{b}_i) - (\partial_i f)(\vec{a}) \right| \\ &< ||\vec{x} - \vec{a}|| \cdot \sum_{i=1}^{m} \frac{\epsilon}{n} \\ &= \epsilon \cdot ||\vec{x} - \vec{a}|| \end{split}$$

Theorem (13.2). $A \subseteq \mathbb{R}^n$ open, $f \in C^1(A, \mathbb{R})$. Let $I \subseteq \mathbb{R}$ be an open interval and let $\gamma: I \to \mathbb{R}^n$ be a differentiable path such that $\gamma(t) \in A$ for all $t \in I$. Define $u: I \to \mathbb{R}$ by $u(t) = f(\gamma(t))$ Then u is differentiable with

$$u'(t) = \langle (\nabla f)(\gamma(t)), \gamma'(t) \rangle$$

Proof. Fix $t_0 \in I$ for which we will prove that the Chain Rule holds. So we need

$$\lim_{t \to t_0} \frac{u(t) - u(t_0)}{t - t_0} = \langle (\nabla f)(\gamma(t_0)), \gamma'(t_0) \rangle$$

We will do this limit by sequence. Let $(t_k)_{k=1}^{\infty}$ in I such that $t_k \to t_0$. Will show that

$$\lim_{k \to \infty} \frac{u(t_k) - u(t_0)}{t_k - t_0} = \langle (\nabla f)(\gamma(t_0)), \gamma'(t_0) \rangle$$

Denote $\gamma(t_0) = \vec{a} \in A$, $\gamma(t_k) = \vec{t}_k \in A$, $\forall k \in \mathbb{N}$. Then $(\vec{x}_k)_{k=1}^{\infty}$ is a sequence in A. Claim 1. We have $\vec{x}_k \to \vec{a}$, and moreover that

$$\lim_{k \to \infty} \frac{1}{t_k - t_0} (\vec{x}_k - \vec{a}) = \gamma'(t_0)$$

Verif of Claim 1. For every $k \in \mathbb{N}$ we have

$$\vec{x}_k = \gamma(t_k) = (\gamma^{(1)}(t_k), \cdots, \gamma^{(n)}(t_k))$$

where $\gamma^{(1)}, \dots \gamma^{(n)} \colon I \to \mathbb{R}$ are differentiable, hence continuous. When $k \to \infty$, get $\gamma^{(i)}(t_k) \to \gamma^{(i)}(t_0)$. So $\vec{x}_k \to (\gamma^{(1)}(t_0), \dots, \gamma^{(n)}(t_0))$. Hence $\vec{x}_k \to \vec{a}$ as needed. Moreover,

$$\frac{1}{t_k - t_0}(\vec{x}_k - \vec{a}) = \left(\frac{\gamma^{(1)}(t_k) - \gamma^{(1)}(t_0)}{t_k - t_0}, \cdots, \frac{\gamma^{(n)}(t_k) - \gamma^{(n)}(t_0)}{t_k - t_0}\right) \to \left((\gamma^{(1)})'(t_0), \cdots, (\gamma^{(n)})'(t_0)\right) = \gamma'(t_0)$$

Claim 2. Pick r > 0 such that $B(\vec{a}, r) \subseteq A$, and pick $k_0 \in \mathbb{N}$ such that $\vec{x}_k \in B(\vec{a}, r)$ for all $k \ge k_0$. Then for every $k \ge k_0$ have $\operatorname{Co}(\vec{a}, \vec{x}_k) \subseteq A$, and we can find $\vec{b}_k \in \operatorname{Co}(\vec{a}, \vec{x}_k)$ such that

$$\frac{u(t_k) - u(t_0)}{t_k - t_0} = \langle (\nabla f)(\vec{b}_k) \,, \, \frac{1}{t_k - t_0}(\vec{x}_k - \vec{a}) \, \rangle$$

Verif of Claim 2. Application of MVT.

Claim 3. Let $(\vec{b}_k)_{k=0}^{\infty}$ be as in Claim 2. Then $\vec{v}_k \to \vec{a}$, and therefore $(\nabla f)(\vec{b}_k) \to (\nabla f)(\vec{a})$.

Verif of Claim 3. For every $k \ge k_0$ we have $\vec{b}_k \in \text{Co}(\vec{a}, \vec{x}_k)$, have $||\vec{b}_k - \vec{a}|| \le ||\vec{x}_k - \vec{a}||$. By squeeze theorem $\vec{b}_k \to \vec{a}$. Then for every $1 \leq i \leq n$ get $(\partial_i f)(\vec{b}_k) \to (\partial_i f)(\vec{a})$ because $\partial_i f$ is continuous on A. Then $(\nabla f)(\vec{b}_k) \to (\nabla f)(\vec{a}).$

Claim 4. We have

$$\lim_{k \to \infty} \frac{u(t_k) - u(t_0)}{t_k - t_0} = \langle (\nabla f)(\gamma(t_0)), \gamma'(t_0) \rangle$$

Verif of Claim 4. Have $(\nabla f)(\vec{b}_k) \to (\nabla f)(\vec{a})$

$$\lim_{k \to \infty} \frac{1}{t_k - t_0} (\vec{x}_k - \vec{a}) = \gamma'(t_0)$$

 So

$$\langle (\nabla f)(\vec{b}_k), \frac{1}{t_k - t_0}(\vec{x}_k - \vec{a}) \rangle \rightarrow \langle (\nabla f)(\vec{a}), \gamma'(t) \rangle$$

Since

$$\frac{u(t_k) - u(t_0)}{t_k - t_0} = \langle (\nabla f)(\vec{b}_k) \,, \, \frac{1}{t_k - t_0}(\vec{x}_k - \vec{a}) \, \rangle$$

then

$$\lim_{k \to \infty} \frac{u(t_k) - u(t_0)}{t_k - t_0} = \langle (\nabla f)(\gamma(t_0)), \gamma'(t_0) \rangle$$

Proposition (16.4). $A \neq \emptyset$ in \mathcal{M}_n . Let Δ' and Δ'' be two divisions of A. Then exists division Γ of A such that $\Gamma \prec \Delta'$ and $\Gamma \prec \Delta''$.

Proof. Write $\Delta' = \{A'_1, \cdots, A'_r\}, \, \Delta'' = \{A''_1, \cdots, A''_s\}.$ Put $\Gamma = \{A'_i \cap A''_i \mid 1 \le i \le r, 1 \le j \le s, A'_i \cup A''_i \ne \emptyset\}$

Lemma (16.7). $A \in \mathcal{M}_n, f: A \to \mathbb{R}$ bounded. Let Δ, Γ be divisions of A such that $\Gamma \prec \Delta$. Then we have $U(f,\Gamma) \leq U(F,\Delta)$ and $L(f,\Gamma) \geq L(f,\Delta)$.

Proof. Will prove the inequality for upper sums. Let $\Delta = \{A_1, \dots, A_r\}$. $\Gamma = \{B_{1,1}, \dots, B_{1,q_1}, \dots, B_{r,1}, \dots, B_{r,q_r}\}$ where $B_{i,1} \cup \dots \cup B_{i,q_i} = A_i, 1 \leq i$ leqr.

Then

$$U(f,\Gamma) = \sum_{i=1}^r \left(\sum_{j=1}^{q_i} \operatorname{Vol}(B_{i,j}) \cdot \sup_{b_{i,j}}(f) \right) \le \sum_{i=1}^r \left(\sum_{j=1}^{q_i} \operatorname{Vol}(B_{i,j}) \right) \cdot \sup_{A_i}(f) = U(f,\Delta).$$

Proposition (17.1). $A \in \mathcal{M}_n$. $f: A \to \mathbb{R}$ bounded. The set of real numbers

 $T = \{ U(f, \Delta) \mid \Delta \text{ division of } A \}$

is bounded from below, so has an inf.

The number $\inf(T) \in \mathbb{R}$ is called the upper integral of f on Am denoted as $\overline{\int}_A f$ or $\overline{\int}_A f(\vec{x}) d\vec{x}$. The set of real numbers

 $S = \{ L(f, \Delta) \mid \Delta \text{ division of } A \}$

is bounded from above, so has an sup.

The number $\sup(S) \in \mathbb{R}$ is called the lower integral of f on Am denoted as $\int_{A} f$ or $\int_{A} f(\vec{x}) d\vec{x}$.

One has $\int_{A} f \leq \int_{A} f$

Proof. Fix a division if Δ'' of A then $L(f, \Delta'')$ is a lower bound for $T = \{U(f, \Delta') \mid \Delta' \text{ division of } A\}$. Hence T is bounded below with $\inf(T) \ge L(f, \Delta'')$.

Theorem (17.3). $A \in \mathcal{M}_n, f: A \to \mathbb{R}$ bounded. Then TFAE

- 1. f is integrable on A.
- 2. for every $\epsilon > 0$ there exists a division Δ of A such that $U(f, \Delta) L(f, \Delta) < \epsilon$.
- 3. There exists a sequence $(\Delta_k)_{k=1}^{\infty}$ of divisions of A such that $U(f, \Delta_k) L(f, \Delta_k) \to 0$.

Proof. Will prove $(1) \rightarrow (2)$. Others are left as exercises.

Denote $\int_A f = I$. So have $\underline{\int}_A f = I = \int_A f$. Given $\epsilon > 0$, we need to find a division Δ of A such that $U(f, \Delta) - L(f, \Delta) < \epsilon$.

The idea is to find Δ' such that $I \leq U(f, \Delta') < I + \epsilon/2$. Find Δ'' such that $I - \epsilon/2 < L(f, \Delta'') \leq I$. Then let $\Delta \prec \Delta'$ and $\Delta \prec \Delta''$. Then we find such Δ .

Proposition (19.1). Let A be a non-empty set in \mathcal{M}_n , and let f be a function in $Int_b(A, \mathbb{R})$. Let $B \in \mathcal{M}_n$ be such that $B \supseteq A$, and let $g: B \to \mathbb{R}$ be defined by

$$g(\vec{x}) = \begin{cases} f(\vec{x}) & \text{if } \vec{x} \in A \\ 0 & \text{if } \vec{x} \in B \setminus A. \end{cases}$$

Then $f \in Int_b(B, \mathbb{R})$ and $\int_B g = \int_A f$.

Corollary (19.2). Suppose that $A, B \in \mathcal{M}_n$ such that $A \subseteq B$. Let $I_A \colon B \to \mathbb{R}$ be the indicator function defined by

$$I_A(\vec{x}) = \begin{cases} 1 & \text{if } \vec{x} \in A \\ 0 & \text{if } \vec{x} \in B \setminus A \end{cases}$$

Then $I_A \in Int_b(B, \mathbb{R})$, and $\int_B I_A = vol(A)$.

Corollary (19.3). Suppose that $A_1, A_2, \dots, A_p \in \mathcal{M}_n$ are non-empty sets in \mathcal{M}_n such that $A_i \cap A_j = \text{for } i \neq j$. Suppose moreovef that we are given some functions $f_1 \in Int_b(A_1, \mathbb{R}), \dots, f_p \in Int_b(A_p, \mathbb{R})$. Consider the union $A = A_1 \cup \dots \cup A_p$, and let $f: A \to \mathbb{R}$ be defined by

$$f(\vec{x}) = \begin{cases} f_1(\vec{x}) & \text{if } \vec{x} \in A_1 \\ \cdots \\ f_p(\vec{x}) & \text{if } \vec{x} \in A_p \end{cases}$$

Then $f \in Int_b(A, \mathbb{R})$ and $\int_A f = \int_{A_1} f_1 + \dots + \int_{A_p} f_p$.