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Proposition (9.4). A ⊆ Rn, f : A → R, ~a ∈ int(A). Let ~v 6= ~0 ∈ Rn. Suppose that (∂~vf)(~a) exists. Then for
every α ∈ R, the directional derivative (∂α~vf)(~a), and

(∂α~vf)(~a) = α(∂~vf)(~a)

Proof. If α = 0, then the equation becomes 0 = 0.
Assume α 6= 0. Denote α~v = ~w. Then

lim
t→0

f(~a+ t~w)− f(~a)

t

= lim
t→0

f(~a+ tα~v)− f(~a)

tα
α

= lim
s→0

f(~a+ s~v)− f(~a)

s
α

=(∂~vf)(~a) · α

Proposition (9.8). A ⊆ Rn, f : A→ R, ~a ∈ int(A). Suppose (∂~vf)(~a) exists for all ~v ∈ bRn, and that we have
(Add) property. Then for every ~v ∈ Rn, we have

(∂~vf)(~a) = 〈~v , (∇f)(~a) 〉

Proof. Fix ~v = (v(1), · · · , v(n)) ∈ Rn, and write ~v = v(1)~e1 + · · ·+ v(n)~en. Then

(∂~vf)(~a) = (∂v(1)~e1+···+v(n)~enf)(~a)

= (∂v(1)~e1 f)(~a) + · · ·+ (∂v(n)~en f)(~a)

= v(1)(∂1f)(~a) + · · ·+ v(1)(∂nf)(~a)

= 〈~v , (∇f)(~a) 〉

Proposition (10.2). A ∈ Rn, f : A → R, ~a ∈ int(A), ~v ∈ Rn and suppose that (∂~vf)(~a) exists. If ~a is a point
of local extremum for f , then (∂~vf)(~a) = 0.

Proof. Assume that ~a is a local minimum. Let r > 0 be such that B(~a, r) ⊆ A and f(~a) ≤ f(~x) for all
~x ∈ B(~a, r). Let c = r

1+||~v || . Then have ~a+ t~v ∈ B(~a, r), ∀t ∈ (−c, c). Define h : (−c, c)→ R

h(t) = f(~a+ t~v)

For every t ∈ I, we have h(t) = f(~a+ t~v) ≥ f(~a) = h(0). Hence 0 is a point of minimum for h on I.
Then we have

lim
t→0

h(t)− h(0)

t− 0
= lim
t→0

f(~a+ t~v)− f(~a)

t
= (∂~vf)(~a)

Since (∂~vf)(~a) exists, then the left hand side must exist as well. Then h′(0) = (∂~vf)(~a). Since h′(0) exists
and 0 is a point of minimum, then h′(0) = 0. So (∂~vf)(~a) = 0, as required.

Theorem (10.5). A ⊆ Rn open. f : A → R. ~v 6= ~0 ∈ Rn. Suppose that (∂~vf)(~a) exists at every ~a ∈ A. Let

~x, ~y ∈ A be such that Co(~x, ~y) ⊆ A and such that ~y − ~x = α~v for some α ∈ R. Then ∃~b ∈ Co(~x, ~y) such that

f(~y)− f(~x) = α · (∂~vf)(~b) = (∂α~vf)(~b)

Proof. Will assume α 6= 0. Define ϕ(t) = f((1− t)~x+ t~y). Idea is to use MVT from calculus I on ϕ.
Claim 1.
(a). ϕ(0) = f(~x), ϕ(1) = f(~y).
(b). For every t ∈ [0, 1], ϕ is differentiable at t with ϕ′(t) = α(∂~vf)((1− t)~x+ t~y).
Verif of Claim 1.
(a) .....
(b) Fix t0 ∈ [0, 1] where we check the differentiability of ϕ. Denote (1 − t0)~x + t0~y = ~a ∈ A. Look

at the newton quotient ϕ(t0+h)−ϕ(t0)
h , with h 6= 0 such that t0 + h ∈ [0, 1]. Then we have ϕ(t0) = f(~a).

ϕ(t0 + h) = f(~a− h~x+ h~y) = f(~a+ hα~v). So

lim
h→0

ϕ(t0 + h)− ϕ(t0)

h
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= lim
h→0

f(~a+ hα~v)− f(~a)

hα
· α

=α · (∂~vf)(~a)

Hence ϕ′(t0) exists and has the claimed formula.
Claim 2. ∃c ∈ (0, 1) such that ϕ(1)− ϕ(0) = ϕ′(c).
Verif of Claim 2.
ϕ is continuous at every t ∈ [0, 1], since ϕ is differentiable at every t ∈ [0, 1].

Claim 3. ∃~b ∈ Co(~x, ~y) such that f(~y)− f(~x) = α · (∂~vf)(~b).
Verif of claim 3.
Take c ∈ (0, 1) as in claim 2. put~b = (1−c)~x+c~y. Then f(~y)−f(~x) = ϕ(1)−ϕ(0) = ϕ′(c) = α ·(∂~vf)(~b).

Theorem (11.3). A ⊆ Rn, f ∈ C1(A,R). Then for every ~a ∈ A we have

(L−Approx) lim
~x→~a

|f(~x)− f(~a)− 〈~x− ~a , (∇f)(~a) 〉|
|| ~x− ~a ||

= 0

Corollary (11.4). A ⊆ Rn open, f ∈ C1(A,R), ~a ∈ A. Then for every ~v ∈ Rn, the directional derivative
(∂~vf)(~a) exists, and have (∂~vf)(~a) = 〈~v , (∇f)(~a) 〉.

Proof. In (L-Approx) we pick ~x of the form ~a+ t~v. Then ~x→ ~a be comes t→ 0.
Then multiply the limit by ||~v ||

lim
t→0

|f(~a+ t~v)− f(~a)− 〈(~a+ t~v)− ~a , (∇f)(~a) 〉|
||~a+ t~v − ~a ||

· ||~v || = 0||~v || = 0

lim
t→0

∣∣∣∣f(~a+ t~v)− f(~a)− t〈~v , (∇f)(~a) 〉
t

∣∣∣∣ = 0

lim
t→0

∣∣∣∣f(~a+ t~v)− f(~a)

a
− 〈~v , (∇f)(~a) 〉

∣∣∣∣ = 0

lim
t→0

f(~a+ t~v)− f(~a)

a
= 〈~v , (∇f)(~a) 〉

Corollary (11.5). A ⊆ Rn open, f ∈ C1(A,R), ~a ∈ A. The directional derivatives at ~a have (Add) property.

Lemma (11.6). A ⊆ Rn open, f ∈ C1(A,R), ~a ∈ R. Pick r > 0 such that B(~a, r) ⊆ A. Then for every ~x ∈
B(~a, r) we can find ~b1, · · ·~bn ∈ B(~a, r) such that f(~x)− f(~a) = 〈~x−~a , ~w 〉 with ~w = ((∂1f)(~b1), · · · , (∂nf)(~bn)).

Proof. Fix ~x ∈ B(~a, r). Consider vectors ~x0, ~x1, · · · , ~xn, defined as follows:

~x0 = ~a = (a(1), · · · , a(n))

~x1 = ~a = (x(1), · · · , a(n))

~x2 = ~a = (x(1), x(2), · · · , a(n))

· · ·

~xn = ~a = (x(1), · · · , x(n)) = ~x

Note that for every 1 ≤ i ≤ n we have || ~xi − ~a || ≤ || ~x− ~a || < r. Hence ~x0, ~x1, · · · , ~xn ∈ B(~a, r) ⊆ A.

Claim for every 1 ≤ i ≤ n there exists ~bi ∈ Co(~xi−1, ~xi) such that

f(~xi)− f(~xi)− f(~xi−1) = (x(i) − a(i))(∂if)(~bi)

Verification of the claim.

~xi − ~xi−1
=(x(i) − a(i)) · ~ei
=α~ei

Apply MVT in direction ~ei with endpoints ~xi−1 and ~xi, then ∃~bi ∈ Co(~xi−1, ~xi) such that f(~xi)− f(~xi−1) =

(x(i) − a(i))(∂if)(~bi). Done with claim.
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Then

f(~x)− f(~a) = f(~xm)− f(~x0)

= f(~xm)− f(~xm−1) + · · ·+ f(~x1)− f(~x0)

=

m∑
i=1

f(~xi)− f(~xi−1)

=

m∑
i=1

(x(i) − a(i))(∂if)(~bi)

= 〈~x− ~a , ~w 〉

where ~w = ((∂1f)(~b1), · · · , (∂nf)(~bn)).

Proof of Theorem 11.3. Given ε > 0, we want to find δ > 0 such that B(~a, δ) ⊆ A and such that

(Want)
|f(~x)− f(~a)− 〈~x− ~a , (∇f)(~a) 〉|

|| ~x− ~a ||
< ε

for all ~x ∈ B(~a, δ) \ {~a}.
Fix r0 > 0 such that B(~a, r0) ⊆ A. For every 1 ≤ i ≤ n, we know that ∂if is continuous at ~a hence

∃0 ≤ ri ≤ r0 such that for all ~y ∈ B(~a, ri) we have

|(∂if)(~y)− (∂if)(~a)| < ε

n

Put δ = min(r1, · · · , rn). Claim δ is good for (Want).
Verification of claim. Pick ~x ∈ B(~a, δ) \ {a} for which we prove that

(Want′) |f(~x)− f(~a| − 〈~x− ~a , (∇f)(~a) 〉 < ε|| ~x− ~a ||.

Lemma 11.6 gives us points ~b1, · · · ,~bn ∈ B(~a, δ) such that

f(~x− ~a) = 〈~x− ~a , ~w 〉

where ~w = ((∂1f)(~b1), · · · , (∂nf)(~bn)).
Then

|f(~x)− f(~a| − 〈~x− ~a , (∇f)(~a) 〉
= |〈~x− ~a , ~w 〉 − 〈~x− ~a , (∇f)(~a) 〉|
= |〈~x− ~a , ~w − (∇f)(~a) 〉|
≤|| ~x− ~a || · || ~w − (∇f)(~a) ||
≤|| ~x− ~a || · || ~w − (∇f)(~a) ||1

=|| ~x− ~a || ·
m∑
i=1

∣∣∣(∂if)(~bi)− (∂if)(~a)
∣∣∣

<|| ~x− ~a || ·
m∑
i=1

ε

n

=ε · || ~x− ~a ||

Theorem (13.2). A ⊆ Rn open, f ∈ C1(A,R). Let I ⊆ R be an open interval and let γ : I → Rn be a
differentiable path such that γ(t) ∈ A for all t ∈ I. Define u : I → R by u(t) = f(γ(t)) Then u is differentiable
with

u′(t) = 〈(∇f)(γ(t)) , γ′(t) 〉

Proof. Fix t0 ∈ I for which we will prove that the Chain Rule holds. So we need

lim
t→t0

u(t)− u(t0)

t− t0
= 〈(∇f)(γ(t0)) , γ′(t0) 〉
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We will do this limit by sequence. Let (tk)∞k=1 in I such that tk → t0. Will show that

lim
k→∞

u(tk)− u(t0)

tk − t0
= 〈(∇f)(γ(t0)) , γ′(t0) 〉

Denote γ(t0) = ~a ∈ A, γ(tk) = ~tk ∈ A,∀k ∈ N. Then (~xk)∞k=1 is a sequence in A.
Claim 1. We have ~xk → ~a, and moreover that

lim
k→∞

1

tk − t0
(~xk − ~a) = γ′(t0)

Verif of Claim 1. For every k ∈ N we have

~xk = γ(tk) = (γ(1)(tk), · · · , γ(n)(tk))

where γ(1), · · · γ(n) : I → R are differentiable, hence continuous.
When k →∞, get γ(i)(tk)→ γ(i)(t0). So ~xk → (γ(1)(t0), · · · , γ(n)(t0)). Hence ~xk → ~a as needed.
Moreover,

1

tk − t0
(~xk − ~a) = (

γ(1)(tk)− γ(1)(t0)

tk − t0
, · · · , γ

(n)(tk)− γ(n)(t0)

tk − t0
)→ ((γ(1))′(t0), · · · , (γ(n))′(t0)) = γ′(t0)

Claim 2. Pick r > 0 such that B(~a, r) ⊆ A, and pick k0 ∈ N such that ~xk ∈ B(~a, r) for all k ≥ k0. Then for

every k ≥ k0 have Co(~a, ~xk) ⊆ A, and we can find ~bk ∈ Co(~a, ~xk) such that

u(tk)− u(t0)

tk − t0
= 〈(∇f)(~bk) ,

1

tk − t0
(~xk − ~a) 〉

Verif of Claim 2. Application of MVT.
Claim 3. Let (~bk)∞k=0 be as in Claim 2. Then ~vk → ~a, and therefore (∇f)(~bk)→ (∇f)(~a).

Verif of Claim 3. For every k ≥ k0 we have ~bk ∈ Co(~a, ~xk), have ||~bk − ~a || ≤ || ~xk − ~a ||. By squeeze

theorem ~bk → ~a. Then for every 1 ≤ i ≤ n get (∂if)(~bk) → (∂if)(~a) because ∂if is continuous on A. Then

(∇f)(~bk)→ (∇f)(~a).
Claim 4. We have

lim
k→∞

u(tk)− u(t0)

tk − t0
= 〈(∇f)(γ(t0)) , γ′(t0) 〉

Verif of Claim 4. Have (∇f)(~bk)→ (∇f)(~a)

lim
k→∞

1

tk − t0
(~xk − ~a) = γ′(t0)

So

〈(∇f)(~bk) ,
1

tk − t0
(~xk − ~a) 〉 → 〈(∇f)(~a) , γ′(t) 〉

Since
u(tk)− u(t0)

tk − t0
= 〈(∇f)(~bk) ,

1

tk − t0
(~xk − ~a) 〉

,
then

lim
k→∞

u(tk)− u(t0)

tk − t0
= 〈(∇f)(γ(t0)) , γ′(t0) 〉

Proposition (16.4). A 6= ∅ in Mn. Let ∆′ and ∆′′ be two divisions of A. Then exists division Γ of A such
that Γ ≺ ∆′ and Γ ≺ ∆′′.

Proof. Write ∆′ = {A′1, · · · , A′r}, ∆′′ = {A′′1 , · · · , A′′s}.
Put Γ = {A′i ∩A′′j | 1 ≤ i ≤ r, 1 ≤ j ≤ s,A′i ∪A′′j 6= ∅}

Lemma (16.7). A ∈ Mn, f : A → R bounded. Let ∆,Γ be divisions of A such that Γ ≺ ∆. Then we have
U(f,Γ) ≤ U(F,∆) and L(f,Γ) ≥ L(f,∆).
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Proof. Will prove the inequality for upper sums. Let ∆ = {A1, · · · , Ar}. Γ = {B1,1, · · ·B1,q1 , · · · , Br,1, · · ·Br,qr}
where Bi,1 ∪ · · · ∪Bi,qi = Ai, 1 ≤ i
leqr.

Then

U(f,Γ) =

r∑
i=1

 qi∑
j=1

Vol(Bi,j) · sup
bi,j

(f)

 ≤ r∑
i=1

 qi∑
j=1

Vol(Bi,j)

 · sup
Ai

(f) = U(f,∆).

Proposition (17.1). A ∈Mn. f : A→ R bounded. The set of real numbers

T = {U(f,∆) | ∆ division of A}

is bounded from below, so has an inf.
The number inf(T ) ∈ R is called the upper integral of f on Am denoted as

∫
A
f or

∫
A
f(~x)d~x.

The set of real numbers
S = {L(f,∆) | ∆ division of A}

is bounded from above, so has an sup.
The number sup(S) ∈ R is called the lower integral of f on Am denoted as

∫
A
f or

∫
A
f(~x)d~x.

One has
∫
A
f ≤

∫
A
f

Proof. Fix a division if ∆′′ of A then L(f,∆′′) is a lower bound for T = {U(f,∆′) | ∆′ division of A}. Hence
T is bounded below with inf(T ) ≥ L(f,∆′′).

Theorem (17.3). A ∈Mn, f : A→ R bounded. Then TFAE

1. f is integrable on A.

2. for every ε > 0 there exists a division ∆ of A such that U(f,∆)− L(f,∆) < ε.

3. There exists a sequence (∆k)∞k=1 of divisions of A such that U(f,∆k)− L(f,∆k)→ 0.

Proof. Will prove (1) → (2). Others are left as exercises.

Denote
∫
A
f = I. So have

∫
A
f = I =

∫
A
f . Given ε > 0, we need to find a division ∆ of A such that

U(f,∆)− L(f,∆) < ε.
The idea is to find ∆′ such that I ≤ U(f,∆′) < I + ε/2. Find ∆′′ such that I − ε/2 < L(f,∆′′) ≤ I. Then

let ∆ ≺ ∆′ and ∆ ≺ ∆′′. Then we find such ∆.

Proposition (19.1). Let A be a non-empty set in Mn, and let f be a function in Intb(A,R). Let B ∈ Mn be
such that B ⊇ A, and let g : B → R be defined by

g(~x) =

{
f(~x) if ~x ∈ A
0 if ~x ∈ B \A.

Then f ∈ Intb(B,R) and
∫
B
g =

∫
A
f .

Corollary (19.2). Suppose that A,B ∈Mn such that A ⊆ B. Let IA : B → R be the indicator function defined
by

IA(~x) =

{
1 if ~x ∈ A
0 if ~x ∈ B \A

Then IA ∈ Intb(B,R), and
∫
B
IA = vol(A).

Corollary (19.3). Suppose that A1, A2, · · · , Ap ∈Mn are non-empty sets inMn such that Ai∩Aj = for i 6= j.
Suppose moreovef that we are given some functions f1 ∈ Intb(A1,R), · · · fp ∈ Intb(Ap,R). Consider the union
A = A1 ∪ · · · ∪Ap, and let f : A→ R be defined by

f(~x) =


f1(~x) if ~x ∈ A1

· · ·
fp(~x) if ~x ∈ Ap

Then f ∈ Intb(A,R) and
∫
A
f =

∫
A1
f1 + · · ·+

∫
Ap
fp.
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