MATH 148 Calculus II, Final Definitions and Theorems

1 Definition (Left Riemann Sum). Given f(x), bounded on [a, b], and a partition \mathcal{P} of [a, b], we define the *left Riemann sum of* f(x) *with respect to* \mathcal{P} by

$$L(f, \mathcal{P}) = L_a^b(f, \mathcal{P}) = \sum_{i=1}^n m_i \cdot \Delta x_i,$$

where

$$m_i = \inf\{f(x) \colon x \in [x_{i-1}, x_i]\},\$$

and

$$\Delta x_i = x_i - x_{i-1}.$$

2 Definition (Right Riemann Sum). Given f(x), bounded on [a, b], and a partition \mathcal{P} of [a, b], we define the right Riemann sum of f(x) with respect to \mathcal{P} by

$$U(f, \mathcal{P}) = U_a^b(f, \mathcal{P}) = \sum_{i=1}^n M_i \cdot \Delta x_i,$$

where

$$M_i = \sup\{f(x) : x \in [x_{i-1}, x_i]\}.$$

3 Definition (Integrability of Functions). We say that f(x) is Riemann integrable on [a,b] if

$$\overline{\int_a^b} f(x) \, \mathrm{d}x = \int_a^b f(x) \, \mathrm{d}x,$$

where

$$\overline{\int_a^b} f(x) dx = \inf \{ U(f, \mathcal{P}) \colon \mathcal{P} \text{ a partition of } [a, b] \},$$

and

$$\int_a^b f(x) \, \mathrm{d}x = \sup\{L(f,\mathcal{P}) \colon \mathcal{P} \text{ a partition of } [a,b]\},$$

4 Theorem. If \mathcal{P} and \mathcal{Q} are partitions of f(x) on [a,b], then $L(f,\mathcal{P}) \leq U(f,\mathcal{Q})$.

Proof. Let $\mathcal{T} = \mathcal{P} \cup \mathcal{Q}$. Then \mathcal{T} refines both \mathcal{P} and \mathcal{Q} . Hence $L(f,\mathcal{P}) \leq L(f,\mathcal{T}) \leq U(f,\mathcal{T}) \leq U(f,\mathcal{Q})$, as desired.

5 Theorem. If there exists a sequence of partitions \mathcal{P}_N such that $\lim_{n\to\infty} L(f,\mathcal{P}_n) = \lim_{n\to\infty} U(f,\mathcal{P}_n) = R$ then f is integrable.

Proof.

6 Theorem. If f is bounded on [a,b] then f is integrable on [a,b] if and only if for every $\epsilon > 0$ there is a partition \mathcal{P} such that

$$U(f,\mathcal{P}) - L(f,\mathcal{P}) < \epsilon$$

Proof. First suppose that for every $\epsilon > 0$ there is a partition satisfying

$$U(f, \mathcal{P}) - L(f, \mathcal{P}) < \epsilon.$$

Since $\inf\{U(f,\mathcal{P}'):\mathcal{P}'\} \leq U(f,\mathcal{P})$ and $\sup\{L(f,\mathcal{P}'):\mathcal{P}'\} \geq L(f,\mathcal{P})$ it follows that

$$\inf\{U(f, \mathcal{P}'): \mathcal{P}'\} - \sup\{L(f, \mathcal{P}'): \mathcal{P}'\} < U(f, \mathcal{P}) - L(f, \mathcal{P}) < \epsilon$$

for all ϵ . Hence $\inf\{U(f,\mathcal{P}'):\mathcal{P}'\}$ – $\sup\{L(f,\mathcal{P}'):\mathcal{P}'\}$ must be zero. Hence f is integrable.

Now suppose f is integrable, i.e., $\inf\{U(f, \mathcal{P}'): \mathcal{P}'\} = \sup\{L(f, \mathcal{P}'): \mathcal{P}'\}$. Hence there are partitions \mathcal{P}_1 and \mathcal{P}_2 such that

$$U(f, \mathcal{P}_1) - L(f, \mathcal{P}_2) < \epsilon$$

Let \mathcal{P} be any partition containing \mathcal{P}_1 and \mathcal{P}_2 . Since $U(f,\mathcal{P}) \leq U(f,\mathcal{P}_1)$ and $L(f,\mathcal{P}) \geq L(f,\mathcal{P}_2)$. It follows that for partition \mathcal{P} the equation is satisfied.

7 Theorem. Suppose a < c < b. If f is integrable on [a,b] then f is integrable on [a,c] and [c,b] and vice versa. If f is integrable on [a,b] then

$$\int_a^b f = \int_a^c f + \int_c^b f.$$

Proof. Suppose f is integrable on [a,b]. Take any $\epsilon>0$. There is a partition $P=\{a=t_0,t_1,\cdots,t_n=b\}$ of [a,b] such that $U(f,P)-L(f,P)<\epsilon$. If P does not contain c then construct a new partition by adding the point c to it. Hence we can assume that P contains c. That is $t_k=c$ for some k. Then $P_1=\{a=t_0,t_1,\cdots,t_k=c\}$ and $P_2=\{c=t_k,t_{k+1},\cdots,t_n=b\}$ are partitions of [a,c] and [c,b]. Since

$$L(f, P) = L(f, P_1) + L(f, P_2)$$

$$U(f, P) = U(f, P_1) + L(f, P_2)$$

we have

$$U(f, P_1) - L(f, P_1) + U(f, P_2) - L(f, P_2) = U(f, P) - L(f, P) < \epsilon.$$

Since both $U(f, P_1) - L(f, P_1)$ and $U(f, P_2) - L(f, P_2)$ are positive, hence each must be smaller than ϵ . Hence f is integrable on [a, c] and [c, b].

Furthermore, by definition of integrability,

$$L(f, P_1) \le \int_a^c f \le U(f, P_1)$$

$$L(f, P_2) \le \int_b^c f \le U(f, P_2)$$

so

$$L(f,P) = L(f,P_1) + L(f,P_2) \le \int_a^c f + \int_c^b f \le U(f,P_1) + U(f,P_2) \le U(f,P)$$

proving that

$$\int_{a}^{b} f = \int_{a}^{c} f + \int_{c}^{b} f$$

Now we show that if f is integrable on [a,c] and [c,b] then it is integrable on [a,b]. Let P_1 and P_2 be partitions of [a,b] and [c,b] such that $U(f,P_1)-L(f,P_1)<\frac{\epsilon}{2}$ and $U(f,P_2)-L(f,P_2)<\frac{\epsilon}{2}$. Let P be the partition containing the points of P_1 and P_2 . Then

$$U(f, P) - L(f, P) = U(f, P_1) + U(f, P_2) - L(f, P_1) - L(f, P_2) < \epsilon$$

proving that f is integrable on [a, b].

8 Theorem. If f and g are integrable on [a,b] then f+g is integrable on [a,b] and

$$\int_a^b (f+g) = \int_a^b f + \int_a^b g$$

Proof. Let $P = [t_0, \dots, t_N]$ be a partition of [a, b]. Let $Q_k = [t_{k-1}, t_k]$ for $k = 1, 2, \dots, N$. Since

$$\inf(f, Q_k) + \inf(g, Q_k) < \inf(f + g, Q_k)$$

then

$$L(f, P) + L(q, P) < L(f + q, P).$$

Similarly,

$$U(f+q,P) < U(f,P) + U(q,P).$$

Hence

$$L(f, P) + L(g, P) \le L(f + g, P) \le U(f + g, P) \le U(f, P) + U(g, P).$$

Since f and g are integrable there are partitions P_f and P_g for which $U(f,P_f)-L(f,P_f)<\frac{\epsilon}{2}$ and $U(g,P_g)-L(g,P_g)<\frac{\epsilon}{2}$. Let P contain both P_f and P_g , then

$$U(f,P) + U(g,P) - L(f,P) - L(g,P) < \epsilon$$

and it follows that

$$U(f+q,P) - L(f+q,P) < \epsilon.$$

Hence f + g is integrable.

9 Theorem. If f is integrable on [a,b] and F is defined on [a,b] by

$$F(x) = \int_{a}^{x} f,$$

then F is continuous on [a,b].

Proof. By definition f is bounded on [a, b] so there is a number M such that $|f| \leq M$ on [a, b].

We prove continuity at a point inside [a,b]. The proof for x=a or x=b is similar. Take $x\in(a,b)$ and choose any $\epsilon>0$. Let $\delta=\min\{x-a,b-x,\frac{\epsilon}{M}\}$. Then if $|x-y|<\delta$

- 1. $y \in [a, b]$
- 2. F(y) is defined
- 3. $M|x-y| < \epsilon$

Then if $|x-y| < \delta$ we have

$$F(x) - F(y) = \int_{y}^{x} f(x) dx$$

and since

$$m \le f(x) \le M$$
 on $[a, b] \Rightarrow m(b - a) \le \int_a^b f \le M(b - a)$

hence

$$-M |x - y| \le \int_y^x f \le M |x - y|$$

or

$$|F(x) - F(y)| < \epsilon.$$

Hence F is continuous at x.

10 Theorem (The First Fundamental Theorem of Calculus). Let f be integrable on [a,b] and define F(x) by

$$F(x) = \int_{a}^{x} f.$$

If f is continuous at $c \in [a, b]$, then F is differentiable at c and F'(c) = f(c). If c = a or b then F'(c) means the right- or -left derivative of F.

Proof. Since f is continuous at c, then for every $\epsilon > 0$ there exists a $\delta > 0$ such that if $|x| < \delta$ then $|f(c+x) - f(c)| < \epsilon$.

Then if $0 < h < \delta$, then

$$F(c+h) - F(c) = \int_{c}^{c+h} f$$

lies between $h(f(c) + \epsilon)$ and $h(f(c) - \epsilon)$ since f is between $f(c) - \epsilon$ and $f(c) + \epsilon$ on [c, c + h].

Then

$$\frac{F(c+h)-F(c)}{h} \in (f(c)-\epsilon,f(c)+\epsilon)$$

so

$$\lim_{h \to 0} \frac{F(c+h) - F(c)}{h} = f(c).$$

11 Theorem (The Second Fundamental Theorem of Calculus). If f is integrable on [a,b] and f=g' for some function g then

$$\int_{a}^{b} f = g(b) - g(a)$$

Proof. Let $P = \{t_0, \dots, t_n\}$ be any partition of [a, b]. By the Mean Value Theorem there is a point $x_i \in [t_{i-1}, t_i]$ such that $g(t_i) - g(t_{i-1}) = g'(x_i)(t_i - t_{i-1}) = f(x_i)(t_i - t_{i-1})$.

On each sub-interval we have

$$m_i \le f(x_i) \le M_i$$

hence

$$L(f, P) \le \sum_{i} f(x_i)(t_i - t_{i-1}) \le U(f, P)$$

But

$$\sum_{i} f(x_i)(t_i - t_{i-1}) = \sum_{i} g(t_i) - g(t_{i-1}) = g(b) - g(a)$$

Thus

$$L(f, P) \le g(b) - g(a) \le U(f, P)$$

for all partitions P. This means that $g(b) - g(a) = \int_a^b f$.

12 Definition (Taylor Polynomial). The Taylor Polynomial of Degree n for f at a is

$$P_{n,a}(x) = a_0 + a_1(x-a) + a_2(x-a)^2 + \dots + a_n(x-a)^n$$

where

$$a_k = \frac{f^{(k)}(a)}{k!}$$

Suppose $f^{(n+1)}$ is continuous on [a, x]. Then

$$R_{n,a}(x) = \int_{a}^{x} \frac{f^{(n+1)}(t)}{n!} (x-n)^{n} dt$$

is called the integral form of the remainder.

13 Definition (Summability). The sequence $\{a_n\}$ is summable if the sequence s_n where

$$s_n = \sum_{k=1}^n a_k$$

converges to some number s as $n \to \infty$. The s_n are called partial sums.

14 Definition (Cauchy Criterion). The Cauchy Criterion says that the sequence $\{a_n\}$ is summable iff

$$\lim_{m,n\to\infty} a_{n+1} + \dots + a_m = 0.$$

In other words, it is summable iff

$$\lim_{m,n\to\infty} (s_m - s_n) \to 0$$

15 Definition (Absolutely Convergence). A series $\sum a_n$ is absolutely convergent if $\sum |a_n|$ converges. A series that converges but does not converge absolutely is said to converge conditionally.

16 Definition (Cauchy Product). The Cauchy Product of two series is a particular ordering of the $a_i b_j$

$$\sum_{n=0}^{\infty} \left(\sum_{i=0}^{n} a_i b_{n-i}\right)$$

17 Definition (Uniform Convergence). Let $\{f_n\}$ be a sequence of functions defined on a set A and let f(x) be a function defined on A such that

$$\lim_{n \to \infty} f_n(x) = f(x)$$

for all $x \in A$.

If for every $\epsilon > 0$ there is an N such that for all n > N we have

$$|f_n(x) - f(x)| < \epsilon \text{ for all } x \in A$$

then the f_n are said to converge uniformly to f(x) on A.

18 Definition (Series of Functions). The series $\sum_{n=0}^{\infty} f_n(x)$ converges uniformly to f(x) on A if the sequence of functions

$$s_n(x) = \sum_{k=0}^{n} f_k(x)$$

converges uniformly to f on A.

19 Theorem. If the sequence $\{a_n\}$ is summable then

$$\lim_{n \to \infty} a_n = 0.$$

Proof. Use the Cauchy Criterion with m = n + 1. Since

$$\lim_{n \to \infty} s_n = s$$

then

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} (s_n - s_{n-1}) = \lim_{n \to \infty} s_n - \lim_{n \to \infty} s_{n-1} = s - s = 0$$

20 Theorem (Comparison Test). Suppose $0 \le a_n \le b_n$ for all n > M. Then if $\sum b_n$ converges so does $\sum a_n$.

Proof. Let

$$M_a = \sum_{k=1}^{M} a_k$$

$$M_b = \sum_{k=1}^{M} b_k$$

and let

$$s_n = \sum_{k=1}^{n} a_k = M_a + \sum_{k=M+1}^{n} a_k$$

$$t_n = \sum_{k=1}^{n} b_k = M_b + \sum_{k=M+1}^{n} b_k$$

for n > M.

Then

$$0 \le s_n - M_a \le t_n - M_b$$

for all n > M and these are increasing sequences for n > M. Because $\sum b_k$ exists, then the sequence $t_n - M_b$ is bounded. Hence $s_n - M_a$ is bounded. Hence $\sum a_k$ exists.

21 Theorem (Limit Comparison Test). Suppose that $\{a_n\}$ and $\{b_n\}$ are non-negative sequences such that

$$\lim_{n \to \infty} \frac{a_n}{b_n} = L.$$

Then

- 1. If $L < \infty$ and $\sum b_n$ converges then $\sum a_n$ converges.
- 2. If L > 0 and $\sum b_n$ diverges then so does $\sum a_n$
- **22 Theorem** (Ratio Test). Let $a_n > 0$ for all n > M and suppose that $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = r$. Then
 - 1. $\sum a_n$ converges if r < 1.
 - 2. if r > 1 then $a_n \to \infty$ as $n \to \infty$ and the series diverges.

Proof. When r < 1, choose any s with r < s < 1. Then there is an N > M such that $0 < \frac{a_{n+1}}{a_n} < s$ for n > N. Since $\sum s^k a_N = a_n \sum s^k$ converges so does $\sum a_{N+k}$. Hence so does

$$\sum a_n = \sum_{n=1}^{N} a_n + \sum_{n=N+1}^{\infty} a_n = \sum_{n=0}^{n} a_n + \sum_{n=0}^{\infty} a_{n+1} + \sum_{n=0}^{\infty} a_n = \sum_{n=0}^{\infty} a_n = \sum_{n=0}^{\infty} a_n + \sum_{n=0}^{\infty} a_n = \sum_{n=0}^{\infty} a_$$

When r > 1 choose any s with 1 < s < r. There is an N > M such that for all n > N we have $a_{n+1} > sa_n$. This means that $a_{N+k} > s^k a_N$ for all k > 0. Hence $a_n \to \infty$ as $n \to \infty$ since $a_n > 0$ and s > 1.

23 Theorem (Integral Test). Suppose f(x) is positive and decreasing on $[1, \infty)$. Let $a_n = f(n)$ for all positive integers n. Then $\sum a_n$ converges iff

$$\int_{1}^{\infty} f$$

exists.

Proof. Let P_N be the partition $\{1, 2, \dots, N\}$. The sum $\sum_{n=1}^{N-1} a_n$ is the left Riemann sum $R_{L,N}$ for f on P_N , since f is decreasing

Hence if $\int_1^{\infty} f$ exists so does $\lim_{N\to\infty} R_{R,N}$ because the sequence $R_{R,N}$ is increasing and bounded by $\int_1^{\infty} f$, hence $\sum_{n=1}^{\infty} a_n$ exists.

- **24 Theorem** (Every absolute convergent series is convergent). 1. Every absolute convergent series is convergent.
 - 2. A series is absolutely convergent iff the series formed from its positive terms and the series formed from its negative terms both converge.

Proof. Let

$$a_n^+ = \begin{cases} a_n & \text{if } a_n \ge 0\\ 0 & \text{if } a_n < 0 \end{cases}$$
$$a_n^- = \begin{cases} a_n & \text{if } a_n \le 0\\ 0 & \text{if } a_n > 0 \end{cases}$$

Note that

$$a_n = a_n^+ + a_n^-$$
$$|a_n| = a_n^+ - a_n^-$$

Hence the increasing sequence $\sum a_n^+$ is bounded by $\sum |a_n|$, so does the increasing sequence $\sum a_n^-$.

25 Theorem (Cauchy criterion for uniform convergence). $f_n(x)$ converge uniformly to f(x) on A if and only if for every $\epsilon > 0$ there exists an integer n_0 such that $m \ge n_0$ and $n \ge n_0$ implies that

$$|f_m(x) - f_n(x)| < \epsilon$$

for every $x \in A$.

Proof. Suppose that

$$f_n(x) \to f$$
 uniformly on A .

Choose $\epsilon > 0$. Then there is an n_0 such that for $n > n_0$ we have $|f_n(x) - f(x)| < \epsilon/2$ for all $x \in A$. Then for all $m \ge n_0$ and $n \ge n_0$ we have

$$|f_n(x) - f_m(x)| = |f_n(x) - f(x) + f(x) - f_m(x)|$$

$$\leq |f_n(x) - f(x)| + |f_m(x) - f(x)|$$

$$< \epsilon/2 + \epsilon/2$$

$$= \epsilon$$

Now suppose that for any $\epsilon > 0$ there is an n_0 such that for all $m > n_0$ and $n > n_0$ we have

$$|f_n(x) - f_m(x)| < \epsilon$$

for all $x \in A$. By the Cauchy Criterion for convergence we know that $f_n(x)$ has a limit f(x) as $n \to \infty$ for each x

Choose $\epsilon > 0$. Choose n_0 such that $n \geq n_0$ implies

$$|f_n(x) - f_{n+k}(x)| < \epsilon/2$$

for all $x \in A$ and for all $k \ge 1$. Then

$$\lim_{k \to \infty} |f_n(x) - f_{n+k}(x)| = |f_n(x) - f(x)| \le \epsilon/2$$

Hence for all $n \ge n_0$ we have $|f_n(x) - f(x)| < \epsilon$ for all $x \in A$. Hence f_n converge uniformly on A.

26 Theorem (Uniform Convergence and Integration). Suppose that $\{f_n\}$ is a sequence of functions that are integrable on [a,b] and that they converge uniformly on [a,b] to a function f which is also integrable on [a,b]. Then

$$\lim_{n \to \infty} \int_a^b f_n(x) \, \mathrm{d}x = \int_a^b \lim_n \to \infty f_n(x) \, \mathrm{d}x = \int_a^b f(x) \, \mathrm{d}x$$

27 Theorem (Uniform Convergence and Continuity). Suppose that $\{f_n\}$ is a sequence of functions that are continuous on [a,b] that they converge uniformly on [a,b] to a function f. Then f is continuous on [a,b].

Proof. Consider $x \in (a, b)$. We need to show that $\lim_{h\to 0} f(x+h) = f(x)$. Since $f_n \to f$ uniformly on [a, b] then there is an n such that

$$|f(y) - f_n(y)| < \epsilon/3$$
 for all $y \in [a, b]$

So for all h for which x + h is in [a, b] we have

$$|f(x) - f_n(x)| < \epsilon/3$$

$$|f(x+h) - f_n(x+h)| < \epsilon/3$$

Because f_n is continuous there is a $\delta > 0$ such that for $|h| < \delta$ we have

$$|f_n(x+h) - f_n(x)| < \epsilon/3$$

Hence if $|h| < \delta$ we have

$$|f(x+h) - f(x)| = |f(x+h) - f_n(x+h) + f_n(x+h) - f_n(x) + f_n(x) - f(x)|$$

$$\leq |f(x+h) - f_n(x+h)| + |f_n(x+h) - f_n(x)| + |f_n(x) - f(x)|$$

$$< \epsilon$$

which proves that f(x) is continuous.

28 Theorem (Uniform Convergence and Differentiation). Let $\{f_n\}$ be a sequence of functions differentiable on a closed finite interval [a,b] with integrable derivatives f'_n and suppose that f_n converge pointwise to f. Suppose also that f'_n converge uniformly on [a,b] to a continous function g. Then f is differentiable and

$$f' = \lim_{n \to \infty} f'_n(x)$$

29 Theorem (Weierstrass M-test). Let $\{f_n\}$ be a sequence of functions defined on A and suppose that M_n is a sequence of numbers such that

$$|f_n(x)| \leq M_n$$

for all $x \in A$. Then if $\sum M_n$ converges then $\sum f_n(x)$ converges absolutely on A and converges uniformly to $f(x) = \sum f_n(x)$.