
MATH 148 Calculus II, Final Definitions and Theorems

1 Definition (Left Riemann Sum). Given f(x), bounded on [a, b], and a partition P of [a, b], we define the left
Riemann sum of f(x) with respect to P by

L(f,P) = Lba(f,P) =

n∑
i=1

mi ·∆xi,

where
mi = inf{f(x) : x ∈ [xi−1, xi]},

and
∆xi = xi − xi−1.

2 Definition (Right Riemann Sum). Given f(x), bounded on [a, b], and a partition P of [a, b], we define the
right Riemann sum of f(x) with respect to P by

U(f,P) = U ba(f,P) =

n∑
i=1

Mi ·∆xi,

where
Mi = sup{f(x) : x ∈ [xi−1, xi]}.

3 Definition (Integrability of Functions). We say that f(x) is Riemann integrable on [a, b] if∫ b

a

f(x) dx =

∫ b

a

f(x) dx,

where ∫ b

a

f(x) dx = inf{U(f,P) : P a partition of [a, b]},

and ∫ b

a

f(x) dx = sup{L(f,P) : P a partition of [a, b]},

4 Theorem. If P and Q are partitions of f(x) on [a, b], then L(f,P) ≤ U(f,Q).

Proof. Let T = P ∪ Q. Then T refines both P and Q. Hence L(f,P) ≤ L(f, T ) ≤ U(f, T ) ≤ U(f,Q), as
desired.

5 Theorem. If there exists a sequence of partitions PN such that limn→∞ L(f,Pn) = limn→∞ U(f,Pn) = R
then f is integrable.

Proof.

6 Theorem. If f is bounded on [a, b] then f is integrable on [a, b] if and only if for every ε > 0 there is a
partition P such that

U(f,P)− L(f,P) < ε

Proof. First suppose that for every ε > 0 there is a partition satisfying

U(f,P)− L(f,P) < ε.

Since inf{U(f,P ′) : P ′} ≤ U(f,P) and sup{L(f,P ′) : P ′} ≥ L(f,P) it follows that

inf{U(f,P ′) : P ′} − sup{L(f,P ′) : P ′} ≤ U(f,P)− L(f,P) < ε

for all ε. Hence inf{U(f,P ′) : P ′} − sup{L(f,P ′) : P ′} must be zero. Hence f is integrable.
Now suppose f is integrable, i.e., inf{U(f,P ′) : P ′} = sup{L(f,P ′) : P ′}. Hence there are partitions P1 and

P2 such that
U(f,P1)− L(f,P2) < ε

Let P be any partition containing P1 and P2. Since U(f,P) ≤ U(f,P1) and L(f,P) ≥ L(f,P2). It follows
that for partition P the equation is satisfied.
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7 Theorem. Suppose a < c < b. If f is integrable on [a, b] then f is integrable on [a, c] and [c, b] and vice
versa. If f is integrable on [a, b] then ∫ b

a

f =

∫ c

a

f +

∫ b

c

f.

Proof. Suppose f is integrable on [a, b]. Take any ε > 0. There is a partition P = {a = t0, t1, · · · , tn = b} of
[a, b] such that U(f, P )−L(f, P ) < ε. If P does not contain c then construct a new partition by adding the point
c to it. Hence we can assume that P contains c. That is tk = c for some k. Then P1 = {a = t0, t1, · · · , tk = c}
and P2 = {c = tk, tk+1, · · · , tn = b} are partitions of [a, c] and [c, b]. Since

L(f, P ) = L(f, P1) + L(f, P2)

U(f, P ) = U(f, P1) + L(f, P2)

we have
U(f, P1)− L(f, P1) + U(f, P2)− L(f, P2) = U(f, P )− L(f, P ) < ε.

Since both U(f, P1)− L(f, P1) and U(f, P2)− L(f, P2) are positive, hence each must be smaller than ε. Hence
f is integrable on [a, c] and [c, b].

Furthermore, by definition of integrability,

L(f, P1) ≤
∫ c

a

f ≤ U(f, P1)

L(f, P2) ≤
∫ c

b

f ≤ U(f, P2)

so

L(f, P ) = L(f, P1) + L(f, P2) ≤
∫ c

a

f +

∫ b

c

f ≤ U(f, P1) + U(f, P2) ≤ U(f, P )

proving that ∫ b

a

f =

∫ c

a

f +

∫ b

c

f

Now we show that if f is integrable on [a, c] and [c, b] then it is integrable on [a, b]. Let P1 and P2 be
partitions of [a, b] and [c, b] such that U(f, P1) − L(f, P1) < ε

2 and U(f, P2) − L(f, P2) < ε
2 . Let P be the

partition containing the points of P1 and P2. Then

U(f, P )− L(f, P ) = U(f, P1) + U(f, P2)− L(f, P1)− L(f, P2) < ε

proving that f is integrable on [a, b].

8 Theorem. If f and g are integrable on [a, b] then f + g is integrable on [a, b] and∫ b

a

(f + g) =

∫ b

a

f +

∫ b

a

g

Proof. Let P = [t0, · · · , tN ] be a partition of [a, b]. Let Qk = [tk−1, tk] for k = 1, 2, · · · , N . Since

inf(f,Qk) + inf(g,Qk) ≤ inf(f + g,Qk)

then
L(f, P ) + L(g, P ) ≤ L(f + g, P ).

Similarly,
U(f + g, P ) ≤ U(f, P ) + U(g, P ).

Hence
L(f, P ) + L(g, P ) ≤ L(f + g, P ) ≤ U(f + g, P ) ≤ U(f, P ) + U(g, P ).

Since f and g are integrable there are partitions Pf and Pg for which U(f, Pf )− L(f, Pf ) < ε
2 and U(g, Pg)−

L(g, Pg) <
ε
2 . Let P contain both Pf and Pg, then

U(f, P ) + U(g, P )− L(f, P )− L(g, P ) < ε

and it follows that
U(f + g, P )− L(f + g, P ) < ε.

Hence f + g is integrable.
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9 Theorem. If f is integrable on [a, b] and F is defined on [a, b] by

F (x) =

∫ x

a

f,

then F is continuous on [a, b].

Proof. By definition f is bounded on [a, b] so there is a number M such that |f | ≤M on [a, b].
We prove continuity at a point inside [a, b]. The proof for x = a or x = b is similar. Take x ∈ (a, b) and

choose any ε > 0. Let δ = min{x− a, b− x, εM }. Then if |x− y| < δ

1. y ∈ [a, b]

2. F (y) is defined

3. M |x− y| < ε

Then if |x− y| < δ we have

F (x)− F (y) =

∫ x

y

f

and since

m ≤ f(x) ≤M on [a, b]⇒ m(b− a) ≤
∫ b

a

f ≤M(b− a)

hence

−M |x− y| ≤
∫ x

y

f ≤M |x− y|

or
|F (x)− F (y)| < ε.

Hence F is continuous at x.

10 Theorem (The First Fundamental Theorem of Calculus). Let f be integrable on [a, b] and define F (x) by

F (x) =

∫ x

a

f.

If f is continuous at c ∈ [a, b], then F is differentiable at c and F ′(c) = f(c). If c = a or b then F ′(c) means
the right- or -left derivative of F .

Proof. Since f is continuous at c, then for every ε > 0 there exists a δ > 0 such that if |x| < δ then
|f(c+ x)− f(c)| < ε.

Then if 0 < h < δ, then

F (c+ h)− F (c) =

∫ c+h

c

f

lies between h(f(c) + ε) and h(f(c)− ε) since f is between f(c)− ε and f(c) + ε on [c, c+ h].
Then

F (c+ h)− F (c)

h
∈ (f(c)− ε, f(c) + ε)

so

lim
h→0

F (c+ h)− F (c)

h
= f(c).

11 Theorem (The Second Fundamental Theorem of Calculus). If f is integrable on [a, b] and f = g′ for some
function g then ∫ b

a

f = g(b)− g(a)

Proof. Let P = {t0, · · · , tn} be any partition of [a, b]. By the Mean Value Theorem there is a point xi ∈ [ti−1, ti]
such that g(ti)− g(ti−1) = g′(xi)(ti − ti−1) = f(xi)(ti − ti−1).

On each sub-interval we have
mi ≤ f(xi) ≤Mi

hence
L(f, P ) ≤

∑
i

f(xi)(ti − ti−1) ≤ U(f, P )
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But ∑
i

f(xi)(ti − ti−1) =
∑
i

g(ti)− g(ti−1) = g(b)− g(a)

Thus
L(f, P ) ≤ g(b)− g(a) ≤ U(f, P )

for all partitions P . This means that g(b)− g(a) =
∫ b
a
f .
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12 Definition (Taylor Polynomial). The Taylor Polynomial of Degree n for f at a is

Pn,a(x) = a0 + a1(x− a) + a2(x− a)2 + · · ·+ an(x− a)n

where

ak =
f (k)(a)

k!

Suppose f (n+1) is continuous on [a, x]. Then

Rn,a(x) =

∫ x

a

f (n+1)(t)

n!
(x− n)n dt

is called the integral form of the remainder.

13 Definition (Summability). The sequence {an} is summable if the sequence sn where

sn =

n∑
k=1

ak

converges to some number s as n→∞. The sn are called partial sums.

14 Definition (Cauchy Criterion). The Cauchy Criterion says that the sequence {an} is summable iff

lim
m,n→∞

an+1 + · · ·+ am = 0.

In other words, it is summable iff
lim

m,n→∞
(sm − sn)→ 0

15 Definition (Absolutely Convergence). A series
∑
an is absolutely convergent if

∑
|an| converges. A series

that converges but does not converge absolutely is said to converge conditionally.

16 Definition (Cauchy Product). The Cauchy Product of two series is a particular ordering of the aibj

∞∑
n=0

(

n∑
i=0

aibn−i)

17 Definition (Uniform Convergence). Let {fn} be a sequence of functions defined on a set A and let f(x) be
a function defined on A such that

lim
n→∞

fn(x) = f(x)

for all x ∈ A.
If for every ε > 0 there is an N such that for all n > N we have

|fn(x)− f(x)| < ε for all x ∈ A

then the fn are said to converge uniformly to f(x) on A.

18 Definition (Series of Functions). The series
∑∞
n=0 fn(x) converges uniformly to f(x) on A if the sequence

of functions

sn(x) =

n∑
k=0

fk(x)

converges uniformly to f on A.

19 Theorem. If the sequence {an} is summable then

lim
n→∞

an = 0.

Proof. Use the Cauchy Criterion with m = n+ 1. Since

lim
n→∞

sn = s

then
lim
n→∞

an = lim
n→∞

(sn − sn−1) = lim
n→∞

sn − lim
n→∞

sn−1 = s− s = 0
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20 Theorem (Comparison Test). Suppose 0 ≤ an ≤ bn for all n > M . Then if
∑
bn converges so does

∑
an.

Proof. Let

Ma =

M∑
k=1

ak

Mb =

M∑
k=1

bk

and let

sn =

n∑
k=1

ak = Ma +

n∑
k=M+1

ak

tn =

n∑
k=1

bk = Mb +

n∑
k=M+1

bk

for n > M .
Then

0 ≤ sn −Ma ≤ tn −Mb

for all n > M and these are increasing sequences for n > M . Because
∑
bk exists, then the sequence tn −Mb

is bounded. Hence sn −Ma is bounded. Hence
∑
ak exists.

21 Theorem (Limit Comparison Test). Suppose that {an} and {bn} are non-negative sequences such that

lim
n→∞

an
bn

= L.

Then

1. If L <∞ and
∑
bn converges then

∑
an converges.

2. If L > 0 and
∑
bn diverges then so does

∑
an

22 Theorem (Ratio Test). Let an > 0 for all n > M and suppose that limn→∞
an+1

an
= r. Then

1.
∑
an converges if r < 1.

2. if r > 1 then an →∞ as n→∞ and the series diverges.

Proof. When r < 1, choose any s with r < s < 1. Then there is an N > M such that 0 < an+1

an
< s for n > N .

Since
∑
skaN = an

∑
sk converges so does

∑
aN+k. Hence so does

∑
an =

N∑
n=1

an +

∞∑
n=N+1

an =

n∑
n=0

an +
∑

aN+k

When r > 1 choose any s with 1 < s < r. There is an N > M such that for all n > N we have an+1 > san.
This means that aN+k > skaN for all k > 0. Hence an →∞ as n→∞ since an > 0 and s > 1.

23 Theorem (Integral Test). Suppose f(x) is positive and decreasing on [1,∞). Let an = f(n) for all positive
integers n. Then

∑
an converges iff ∫ ∞

1

f

exists.

Proof. Let PN be the partition {1, 2, · · · , N}. The sum
∑N−1
n=1 an is the left Riemann sum RL,N for f on PN ,

since f is decreasing
Hence if

∫∞
1
f exists so does limN→∞RR,N because the sequence RR,N is increasing and bounded by

∫∞
1
f ,

hence
∑∞
n=1 an exists.

24 Theorem (Every absolute convergent series is convergent). 1. Every absolute convergent series is con-
vergent.

2. A series is absolutely convergent iff the series formed from its positive terms and the series formed from
its negative terms both converge.
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Proof. Let

a+n =

{
an if an ≥ 0

0 if an < 0

a−n =

{
an if an ≤ 0

0 if an > 0

Note that
an = a+n + a−n

|an| = a+n − a−n
Hence the increasing sequence

∑
a+n is bounded by

∑
|an|, so does the increasing sequence

∑
a−n .

25 Theorem (Cauchy criterion for uniform convergence). fn(x) converge uniformly to f(x) on A if and only
if for every ε > 0 there exists an integer n0 such that m ≥ n0 and n ≥ n0 implies that

|fm(x)− fn(x)| < ε

for every x ∈ A.

Proof. Suppose that
fn(x)→ f uniformly on A.

Choose ε > 0. Then there is an n0 such that for n > n0 we have |fn(x)− f(x)| < ε/2 for all x ∈ A. Then for
all m ≥ n0 and n ≥ n0 we have

|fn(x)− fm(x)| = |fn(x)− f(x) + f(x)− fm(x)|
≤ |fn(x)− f(x)|+ |fm(x)− f(x)|
< ε/2 + ε/2

= ε

Now suppose that for any ε > 0 there is an n0 such that for all m > n0 and n > n0 we have

|fn(x)− fm(x)| < ε

for all x ∈ A. By the Cauchy Criterion for convergence we know that fn(x) has a limit f(x) as n→∞ for each
x.

Choose ε > 0. Choose n0 such that n ≥ n0 implies

|fn(x)− fn+k(x)| < ε/2

for all x ∈ A and for all k ≥ 1. Then

lim
k→∞

|fn(x)− fn+k(x)| = |fn(x)− f(x)| ≤ ε/2

Hence for all n ≥ n0 we have |fn(x)− f(x)| < ε for all x ∈ A. Hence fn converge uniformly on A.

26 Theorem (Uniform Convergence and Integration). Suppose that {fn} is a sequence of functions that are
integrable on [a, b] and that they converge uniformly on [a, b] to a function f which is also integrable on [a, b].
Then

lim
n→∞

∫ b

a

fn(x) dx =

∫ b

a

lim
n
→∞fn(x) dx =

∫ b

a

f(x) dx

27 Theorem (Uniform Convergence and Continuity). Suppose that {fn} is a sequence of functions that are
continuous on [a, b] that they converge uniformly on [a, b] to a function f . Then f is continuous on [a, b].

Proof. Consider x ∈ (a, b). We need to show that limh→0 f(x + h) = f(x). Since fn → f uniformly on [a, b]
then there is an n such that

|f(y)− fn(y)| < ε/3 for all y ∈ [a, b]

So for all h for which x+ h is in [a, b] we have

|f(x)− fn(x)| < ε/3

|f(x+ h)− fn(x+ h)| < ε/3
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Because fn is continuous there is a δ > 0 such that for |h| < δ we have

|fn(x+ h)− fn(x)| < ε/3

Hence if |h| < δ we have

|f(x+ h)− f(x)| = |f(x+ h)− fn(x+ h) + fn(x+ h)− fn(x) + fn(x)− f(x)|
≤ |f(x+ h)− fn(x+ h)|+ |fn(x+ h)− fn(x)|+ |fn(x)− f(x)|
< ε

which proves that f(x) is continuous.

28 Theorem (Uniform Convergence and Differentiation). Let {fn} be a sequence of functions differentiable on
a closed finite interval [a, b] with integrable derivatives f ′n and suppose that fn converge pointwise to f . Suppose
also that f ′n converge uniformly on [a, b] to a continous function g. Then f is differentiable and

f ′ = lim
n→∞

f ′n(x)

29 Theorem (Weierstrass M-test). Let {fn} be a sequence of functions defined on A and suppose that Mn is
a sequence of numbers such that

|fn(x)| ≤Mn

for all x ∈ A. Then if
∑
Mn converges then

∑
fn(x) converges absolutely on A and converges uniformly to

f(x) =
∑
fn(x).
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