MATH 148 Calculus II, Final Definitions and Theorems

1 Definition (Left Riemann Sum). Given f(z), bounded on [a, b], and a partition P of [a, b], we define the left
Riemann sum of f(x) with respect to P by

L(f7 ) Lb fa Zmz Az,

where
= inf{f(x): T € [«Ti—lvxi]}v

and
AJZZ‘ =X — XTj—1-

2 Definition (Right Riemann Sum). Given f(x), bounded on [a,b], and a partition P of [a,b], we define the
right Riemann sum of f(x) with respect to P by

U(f,P)=U,(f,P ZM Az,

where

M; =sup{f(x): x € [z;—1, 2]}
3 Definition (Integrability of Functions). We say that f(z) is Riemann integrable on [a, b] if

/“bf(x)dx —/“bf(x)dx
)

/ f(z)dz = inf{U(f,P): P a partition of [a,b]},

a

where

and
b

/ f(z)dz = sup{L(f,P): P a partition of [a,b]},

a

4 Theorem. If P and Q are partitions of f(x) on [a,b], then L(f,P) < U(f, Q).
Proof. Let T = PU Q. Then T refines both P and Q. Hence L(f,P) < L(f,T) < U(f,T) < U(f,Q), as

desired. O

5 Theorem. If there exists a sequence of partitions Py such that lim, oo L(f,Pp) = lim, 0o U(f, Pp) =
then f is integrable.

Proof. O

6 Theorem. If f is bounded on [a,b] then f is integrable on [a,b] if and only if for every e > 0 there is a
partition P such that

U(f,P)— L(f,P)<e

Proof. First suppose that for every e > 0 there is a partition satisfying

U(f,P) - L(f,'P) <e€
Since inf{U(f, P'): P'} <U(f,P) and sup{L(f,P'): P'} > L(f,P) it follows that

inf{U(f,P’): P'} —sup{L(f,P"): P'} <U(f,P) — L(f,P) < e

for all e. Hence inf{U(f, P'): P’} —sup{L(f, P'): P’} must be zero. Hence f is integrable.
Now suppose f is integrable, i.e., inf{U(f,P’): P’} = sup{L(f,P’): P'}. Hence there are partitions P; and
P, such that
U(f7 Pl) - L(f’ PQ) <e€

Let P be any partition containing P; and Ps. Since U(f,P) < U(f,P1) and L(f, P) > L(f,P2). It follows
that for partition P the equation is satisfied. O



7 Theorem. Suppose a < ¢ < b. If f is integrable on [a,b] then f is integrable on |a,c] and [c,b] and vice

versa. If f is integrable on [a,b] then
b c b
L[]
a a c

Proof. Suppose f is integrable on [a,b]. Take any € > 0. There is a partition P = {a = tg,t1, - ,t, = b} of
[a, b] such that U(f, P)—L(f, P) < e. If P does not contain ¢ then construct a new partition by adding the point
¢ to it. Hence we can assume that P contains ¢. That is t;, = ¢ for some k. Then P, = {a = to,t1, - ,tx = ¢}
and Py = {¢ =tg,tgt1, - ,tn, = b} are partitions of [a, c] and [c, b]. Since

L(f,P) = L(f, P1) + L(f, P»)
U(f, P)=U(f, 1) + L(f, P,)

we have
U(f,P1) — L(f, ) +U(f, ) = L(f, P2) = U(f, P) — L(f, P) <.

Since both U(f, P) — L(f, P) and U(f, P») — L(f, P2) are positive, hence each must be smaller than e. Hence
f is integrable on [a, ¢] and [c, b].
Furthermore, by definition of integrability,

L(f.Py) < /Cf <U(f.Py)

L(f, Py) < /b F<U(f.Py)
SO

c b
L(f,P) = L(f.P)) + L(f.P2) < / e / fUP)+U ) UL P)

/abf/acf+/cbf

Now we show that if f is integrable on [a,c] and [e,b] then it is integrable on [a,b]. Let P, and P, be
partitions of [a,b] and [c,b] such that U(f, P1) — L(f, P1) < § and U(f, P2) — L(f,P2) < §. Let P be the
partition containing the points of P; and P,. Then

proving that

U(fvP)_L(fv-P) :U(f7P1)+U(f7P2)_L(fvPl)_L(f7P2) <€
proving that f is integrable on [a, b]. O

8 Theorem. If f and g are integrable on [a,b] then f + g is integrable on [a,b] and

/ab(fw)/:ﬂ/abg

Proof. Let P = [tg,--- ,tn] be a partition of [a,b]. Let Qp = [tx—1,t] for k =1,2,--- | N. Since

inf(f,Qr) + inf(g, Q) < inf(f + g, Qr)

then

L(f,P)+ L(g,P) < L(f + 9, P).
Similarly,

U(f+9,P) <U(f,P)+ Ulg, P).
Hence

L(f,P)+ L(g, P) < L(f + 9, P) <U(f +¢,P) <U(f, P) + U(g, P).

Since f and g are integrable there are partitions Py and P, for which U(f, Py) — L(f, Py) < § and U(g, P,) —
L(g, P;) < §. Let P contain both Py and P,, then

U(f,P)—i—U(g,P)—L(f,P)—L(g,P)<€

and it follows that
U(f+gvp)_L(f+g?P) <€

Hence f + g is integrable. O



9 Theorem. If f is integrable on [a,b] and F is defined on [a,b] by
F@) = [ 1.

Proof. By definition f is bounded on [a,b] so there is a number M such that |f| < M on [a, b].
We prove continuity at a point inside [a,b]. The proof for x = a or & = b is similar. Take z € (a,b) and
choose any € > 0. Let 0 = min{z —a,b —z, 57 }. Then if [z —y[ < ¢

then F is continuous on [a,b].

1. y € [a,b]

2. F(y) is defined

3. Mlz—y|<e

Then if |z — y| < 0 we have

F(x)F(y)—/:f

and since b
m < f(x) <M on [a,b] = m(b—a) §/ f<Mb—a)
hence ”
Mle=yl< [ f<Ml-y
y
or
|[F(z) — F(y)| <e.
Hence F' is continuous at x. O

10 Theorem (The First Fundamental Theorem of Calculus). Let f be integrable on [a,b] and define F(x) by

F@ﬁ:ile

If f is continuous at ¢ € [a,b], then F is differentiable at ¢ and F'(c) = f(c). If ¢ = a or b then F'(c) means
the right- or -left derivative of F'.

Proof. Since f is continuous at ¢, then for every € > 0 there exists a 6 > 0 such that if || < § then

|fle+a)—flc)| <e
Then if 0 < h < 4, then

c+h
F@+M—H@:/ f

lies between h(f(c) + €) and h(f(c) — €) since f is between f(c) — € and f(c) + € on [¢,c + h].
Then
Flet+h) - F(o) € (flc) —¢ flc)+e)

h
% F(c+h)-F

O

11 Theorem (The Second Fundamental Theorem of Calculus). If f is integrable on [a,b] and f = g’ for some
function g then

b
/ f=29() —g(a)

Proof. Let P = {to,--- ,tn} be any partition of [a, b]. By the Mean Value Theorem there is a point x; € [t;—1,t;]
such that g(t;) — g(ti—1) = g'(@:)(ts — ti1) = f@:)(ts — tiz1).
On each sub-interval we have
m; < f(z;) < M;

hence

L(f,P) < Zf(xi)(ti —ti—1) < U(f, P)



But

Thus



12 Definition (Taylor Polynomial). The Taylor Polynomial of Degree n for f at a is
Poo(z) =ao +ay(z —a) +ag(x —a)* + -+ an(zr — a)”
where

ARG
TR

g

Suppose f"*1) is continuous on [a,z]. Then
T p£(n+1) t
Roaw) = [ E - ar
a n!
is called the integral form of the remainder.

13 Definition (Summability). The sequence {a,} is summable if the sequence s,, where

n
Sp = E Qg
k=1
converges to some number s as n — co. The s,, are called partial sums.

14 Definition (Cauchy Criterion). The Cauchy Criterion says that the sequence {a,} is summable iff

im  apyy + -+ am = 0.
m,n— oo

In other words, it is summable iff
lim ($y, —sn) — 0

m,n—co

15 Definition (Absolutely Convergence). A series Y a,, is absolutely convergent if 3 |a,| converges. A series
that converges but does not converge absolutely is said to converge conditionally.

16 Definition (Cauchy Product). The Cauchy Product of two series is a particular ordering of the a;b;

2 Q_aibu—y)

n=0 =0

17 Definition (Uniform Convergence). Let {f,} be a sequence of functions defined on a set A and let f(z) be
a function defined on A such that

lim fo(2) = f(2)

n—oo

for all x € A.
If for every € > 0 there is an N such that for all n > N we have

|fn(z) — f(z)] <eforall x € A

then the f,, are said to converge uniformly to f(z) on A.

18 Definition (Series of Functions). The series >~ f,(x) converges uniformly to f(z) on A if the sequence
of functions

converges uniformly to f on A.

19 Theorem. If the sequence {a,} is summable then

lim a, = 0.
n—o0

Proof. Use the Cauchy Criterion with m =n + 1. Since

lim s, =s
n— oo
then

lim a, = lim (s, — sp—1) = lim s, — lim s,_1 =s—s=0
n— oo n— o0 n— o0 n— o0



20 Theorem (Comparison Test). Suppose 0 < a,, < b, for alln > M. Then if > b, converges so does Y a,.

Proof. Let
M
Ma = Zak
k=1
M
My = by
k=1
and let . .
sn:Zak:Ma+ Z ay
k=1 k=M+1
tn:Zbk:Mb-i- Z br,
k=1 k=M+1
for n > M.
Then

Ogsn*Maétn*Mb

for all n > M and these are increasing sequences for n > M. Because Y b, exists, then the sequence ¢, — M,
is bounded. Hence s,, — M, is bounded. Hence Y a;, exists. O

21 Theorem (Limit Comparison Test). Suppose that {a,} and {b,} are non-negative sequences such that

. Qn,
lim — = L.
n—oo n

Then
1. If L < oo and )_ b, converges then > a, converges.

2. If L >0 and Y b, diverges then so does Y ay,

22 Theorem (Ratio Test). Let a,, > 0 for all n > M and suppose that lim,,_, “Z“ =r. Then
1. Y a, converges if r < 1.
2. ifr > 1 then a, — 00 as n — oo and the series diverges.

Proof. When r < 1, choose any s with r < s < 1. Then there is an N > M such that 0 < % < sforn > N.
Since Y s*ay = a, Y s* converges so does 3 ax . Hence so does

N oo n
Zanzzan+ Z an:Zan+ZaN+k
n=1 n=0

n=N+1

When r > 1 choose any s with 1 < s < r. There is an N > M such that for all n > N we have a,1 > say.
This means that ay > s*ay for all & > 0. Hence a,, — 00 as n — oo since a,, > 0 and s > 1. O

23 Theorem (Integral Test). Suppose f(x) is positive and decreasing on [1,00). Let a, = f(n) for all positive
integers n. Then »_ a, converges iff
I
1

Proof. Let Py be the partition {1,2,---, N}. The sum Zﬁ:ll ay is the left Riemann sum Ry, y for f on Py,
since f is decreasing

Hence if f loo f exists so does limy_, Rr n because the sequence Rr y is increasing and bounded by floo 1,
hence Y7 | a, exists.

exists.

24 Theorem (Every absolute convergent series is convergent). 1. Every absolute convergent series is con-
vergent.

2. A series is absolutely convergent iff the series formed from its positive terms and the series formed from
its negative terms both converge.



Proof. Let
ifa, >0

a: — o B
{O ifa, <0

_ {an ifa, <0
a. =

" 0 ifa,>0
Note that
an = a: + a,,
|an| = a;y —a,
Hence the increasing sequence Y a; is bounded by Y |a,|, so does the increasing sequence Y a,, . O

25 Theorem (Cauchy criterion for uniform convergence). f,(x) converge uniformly to f(x) on A if and only
if for every e > 0 there exists an integer ng such that m > ng and n > ng implies that

‘fm(m) - fn(x)‘ <e€
for every x € A.

Proof. Suppose that
fn(z) = f uniformly on A.

Choose € > 0. Then there is an ny such that for n > ny we have |f,,(z) — f(z)| < ¢/2 for all x € A. Then for
all m > ng and n > ny we have

(@) = fin(2)] = [fn(2) = f(2) + f(2) = fm(2)]
< |fola) = f@)] + [fm(2) = f(2)]
€/2+¢/2

=€

N

Now suppose that for any € > 0 there is an ng such that for all m > ng and n > ng we have

|fru (@) = fn(2)] <€

for all z € A. By the Cauchy Criterion for convergence we know that f,,(z) has a limit f(z) as n — oo for each
x.
Choose € > 0. Choose ng such that n > ng implies

|fn(@) = fotn(z)] <€/2
for all x € A and for all kK > 1. Then

klggo |fr(2) = fark(@)] = [fu(z) — f(2)] < €/2

Hence for all n > ng we have |f,,(z) — f(z)| < € for all x € A. Hence f,, converge uniformly on A. O

26 Theorem (Uniform Convergence and Integration). Suppose that {f,} is a sequence of functions that are
integrable on [a,b] and that they converge uniformly on [a,b] to a function f which is also integrable on [a,b].

Then
b

b b
lim fn(x)dxz/ lirrln—>oofn(x)dx:/ f(z)dz

n—oo a

27 Theorem (Uniform Convergence and Continuity). Suppose that {fn} is a sequence of functions that are
continuous on [a,b] that they converge uniformly on [a,b] to a function f. Then f is continuous on [a,b].

Proof. Consider x € (a,b). We need to show that limy,_,o f(z + h) = f(z). Since f, — f uniformly on [a, b]
then there is an n such that

|f(y) = fu(y)| < /3 for all y € [a,b]

So for all h for which z + h is in [a, b] we have
|f(z) = fn(2)] <€/3
[f(@+h) = fa(z+h)| <€/3



Because f, is continuous there is a ¢ > 0 such that for |h| < § we have

|fn(z +h) = fu(z)] < €/3

Hence if |h| < 6 we have

[f(@+h) = f(@)] = [f(@+h) = fulz+ D)+ fule+h) = ful@) + fulz) = f(2)]
<@+ h) = falz + B[+ [fulz + h) = fu(x)] + [fn(z) = f(2)]

<€
which proves that f(z) is continuous. O

28 Theorem (Uniform Convergence and Differentiation). Let {f,} be a sequence of functions differentiable on
a closed finite interval [a, b] with integrable derivatives f) and suppose that f, converge pointwise to f. Suppose
also that f) converge uniformly on [a,b] to a continous function g. Then f is differentiable and

f'=lim f(x)

n—oo

29 Theorem (Weierstrass M-test). Let {f,} be a sequence of functions defined on A and suppose that M, is
a sequence of numbers such that

| fu(2)| < M,
for all x € A. Then if > M, converges then Y f,(x) converges absolutely on A and converges uniformly to

f(@) =32 ful).



