
MATH 146 Linear Algebra, Final Theorem

1 Required Theorems

1 Theorem (2.42). For A ∈Mn×n(F), the following are equivalent:

1. A is invertible

2. rank(A) = n

3. A can be written as a product of elementary matrices.

4. A can be transformed by elementary row operations to In.

Proof. (1) ⇔ (2): A is invertible ⇐⇒ LA is a bijection ⇐⇒ LA is surjective ⇐⇒ R(LA) = Fn ⇐⇒
dim(R(LA)) = n ⇐⇒ rank(A) = n.

(2)⇒ (3): If rank(A) = n, then A can be transformed by elementary operations to In and

In = Ek · · ·E2E1AE
′
1E
′
2 · · ·E′l

= PAQ.

Since P,Q are invertible we get

A = P−1(PAQ)Q−1

= P−1InQ
−1

= P−1Q−1

= (E1)−1(E2)−1 · · · (Ek)−1(E′l)
−1 · · · (E′2)−1(E′1)−1.

As the inverse of an elementary matrix is again an elementary matrix, this proves (3).
(3)⇒ (4): Assume that A = E1E2 · · ·Ek where each Ei is elementary. Then A is invertible, each E−1i is

also elementary, and A−1 = Ek−1 · · ·E−12 E−11 . Thus

In = A−1A = Ek−1 · · ·E−12 E−11 A.

Multiplying on the left by elementary matrices is the same as applying elementary row operations. Thus this
equations shows that A can be transformed by elementary row operations to In.

(4)⇒ (2): rank(In) = n and elementary operations preserve rank.

2 Theorem (4.16). For all A,B ∈Mn×n(F), det(AB) = det(A) det(B).

Proof. Case 1: rank(A) < n. Then rank(AB) ≤ rank(A) < n. Thus det(A) = det(AB) = 0.
Case 2: rank(A) = n. Then A is invertible, so can be written as a product of elementary matrices

A = E1E2 · · ·Ek.

Thus

det(AB) = det(E1E2 · · ·EkB)

= det(E1) det(E2) · · · det(Ek) det(B)

= det(E1E2 · · ·Ek) det(B)

= det(A) det(B).

3 Corollary (4.18). det(At) = det(A).

Proof. We already know this for elementary matrices. Now consider cases.
Case 1: rank(A) < n. Then rank(At) < n as well so det(A) = 0 = det(At).
Case 2: rank(A) = n. Then we can write A = E1E2 · · ·Ek with each Ei elementary. Then

det(At) = det((Ek)t) · · · det((E2)t) det((E1)t)

= det(Ek) · · · det(E2) det(E1)

= det(A).
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4 Theorem (5.7). Suppose V is finite-dimensional, T ∈ L(V ), λ is an eigenvalue of T , and m is the
multiplicity of λ. Then dim(Eλ) ≤ m.

Proof. Let d = dim(Eλ). Let α = (v1, · · · , vd) be an ordered basis for Eλ. Extend α to an ordered basis
β = (v1 · · · , vd, vd+1, · · · , vn) for V . Let A = [T ]β , so pT (t) = pA(t).

Observe that for i = 1, · · · , d,

T (vi) = λvi

= 0v1 + · · ·λvi + · · ·+ 0vn

Hence

A =



λ 0 · · · 0 ∗ · · · ∗
0 λ · · · 0 ∗ · · · ∗
...

...
. . .

... ∗ · · · ∗
0 0 · · · λ ∗ · · · ∗
0 0 · · · 0 ∗ · · · ∗
...

...
...

...
...

0 0 · · · 0 ∗ · · · ∗


=

(
λId B
O C

)

for some matrices of the appropriate dimensions. Thus

pT (t) = det(A− tIn) =

(
(λ− t)Id B

O C − tIn−d

)
= det((λ− t)Id) det(C − tIn−d)
= (λ− t)d det(Id) det(c− tIn−d)
= (λ− t)d · pC(t).

This proves that (t− λ)d divides pT (t). Since m, the multiplicity of λ, is by definition the largest value such
that (t− λ)m divides pT (t), we have proved that d ≤ m, i.e., dim(Eλ) < m.
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2 Theorems which I think is important

5 Theorem (5.3). Let A ∈Mn×n(F).

1. pA(t) is a polynomial in F[t] of degree n.

2. The leading coefficient of pA(t) is (−1)n.

3. The coefficient of t−1 is (−1)n−1 tr(A)

6 Theorem (5.1). Suppose V is a finite-dimensional vector space over F and T ∈ L(V ). T is diagonalizable
iff V has an ordered basis consisting of eigenvectors of T .

3



3 Unfamiliar Definition

7 Definition (Eigenvector). Let A ∈Mn×n(F). An eigenvector of A is any non-zero vector v ∈ F satisfying
Av ∈ span(v). The unique scalar λ ∈ F satisfying Av = λv is the eigenvalue of A corresponding to v.

8 Definition (Eigenvector II). Let V be a finite-dimensional vector space over F and let T ∈ L(V ). An
eigenvector of T is any nonzero vector v ∈ V satisfying T (v) ∈ span(v). The unique scalar λ ∈ F satisfying
T (v) = λv is the eigenvalue of T corresponding to v.

9 Definition (Eigenspace). Suppose T ∈ L(V ).

1. Given an eigenvalue λ of T , the set

Eλ = {v ∈ V : T (v) = λv}
= {eigenvectors of T corresponding to λ} ∪ {0}.

2. The spectrum of T is the set of eigenvalues of T .

10 Definition (Characteristic polynomial). Let A ∈ Mn×n(F). The characteristic polynomial of A is the
expression det(A− tIn). It is denoted pA(t).

11 Definition (Similar). Suppose A,B ∈Mn×n(F). We say that B is similar to A over F if there exists an
invertible Q ∈Mn×n(F) such that B = Q−1AQ.

12 Definition (Split). A polynomial f(t) ∈ F[t] splits over F if there exist scalars c, a1, · · · an ∈ F not
necessarily distinct such that

f(t) = c(t− a1) · · · (t− an)

13 Definition (Multiplicity). Suppose T ∈ L(V ) and λ is an eigenvalue of T . The multiplicity of λ is the
maximum value k such that (t− λ)k is a factor of pT (t).

14 Definition (Diagonalizable). Suppose V is finite-dimensional and T ∈ L(V ). T is diagonalizable if there
exists an ordered basis β for V such that [T ]β is a diagonal matrix.

Suppose A ∈Mn×n(F). A is diagonalizable over F if A is similar over F to a diagonal matrix D.
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