1 Required Theorems

1 Theorem (2.42). For $A \in M_{n \times n}(\mathbb{F})$, the following are equivalent:

- 1. A is invertible
- 2. $\operatorname{rank}(A) = n$
- 3. A can be written as a product of elementary matrices.

4. A can be transformed by elementary row operations to I_n .

Proof. (1) \Leftrightarrow (2): A is invertible $\iff L_A$ is a bijection $\iff L_A$ is surjective $\iff R(L_A) = \mathbb{F}^n \iff \dim(R(L_A)) = n \iff \operatorname{rank}(A) = n.$

 $(2) \Rightarrow (3)$: If rank(A) = n, then A can be transformed by elementary operations to I_n and

$$I_n = E_k \cdots E_2 E_1 A E_1' E_2' \cdots E_l'$$

= PAQ.

Since P, Q are invertible we get

$$A = P^{-1}(PAQ)Q^{-1}$$

= $P^{-1}I_nQ^{-1}$
= $P^{-1}Q^{-1}$
= $(E_1)^{-1}(E_2)^{-1}\cdots(E_k)^{-1}(E'_l)^{-1}\cdots(E'_2)^{-1}(E'_1)^{-1}$

As the inverse of an elementary matrix is again an elementary matrix, this proves (3).

(3) \Rightarrow (4): Assume that $A = E_1 E_2 \cdots E_k$ where each E_i is elementary. Then A is invertible, each E_i^{-1} is also elementary, and $A_{-1} = E_k - 1 \cdots E_2^{-1} E_1^{-1}$. Thus

$$I_n = A^{-1}A = E_k - 1 \cdots E_2^{-1} E_1^{-1}A$$

Multiplying on the left by elementary matrices is the same as applying elementary row operations. Thus this equations shows that A can be transformed by elementary row operations to I_n .

(4) \Rightarrow (2): rank $(I_n) = n$ and elementary operations preserve rank.

2 Theorem (4.16). For all $A, B \in M_{n \times n}(\mathbb{F})$, $\det(AB) = \det(A) \det(B)$.

Proof. Case 1: rank(A) < n. Then rank $(AB) \le rank(A) < n$. Thus det(A) = det(AB) = 0. Case 2: rank(A) = n. Then A is invertible, so can be written as a product of elementary matrices

$$A = E_1 E_2 \cdots E_k$$

Thus

$$det(AB) = det(E_1E_2\cdots E_kB)$$

= det(E_1) det(E_2) \dots det(E_k) det(B)
= det(E_1E_2\cdots E_k) det(B)
= det(A) det(B).

3 Corollary (4.18). $det(A^t) = det(A)$.

Proof. We already know this for elementary matrices. Now consider cases.

Case 1: $\operatorname{rank}(A) < n$. Then $\operatorname{rank}(A^t) < n$ as well so $\det(A) = 0 = \det(A^t)$.

Case 2: rank(A) = n. Then we can write $A = E_1 E_2 \cdots E_k$ with each E_i elementary. Then

$$det(A^t) = det((E_k)^t) \cdots det((E_2)^t) det((E_1)^t)$$
$$= det(E_k) \cdots det(E_2) det(E_1)$$
$$= det(A).$$

4 Theorem (5.7). Suppose V is finite-dimensional, $T \in L(V)$, λ is an eigenvalue of T, and m is the multiplicity of λ . Then dim $(E_{\lambda}) \leq m$.

Proof. Let $d = \dim(E_{\lambda})$. Let $\alpha = (v_1, \dots, v_d)$ be an ordered basis for E_{λ} . Extend α to an ordered basis $\beta = (v_1 \cdots, v_d, v_{d+1}, \cdots, v_n)$ for V. Let $A = [T]_\beta$, so $p_T(t) = p_A(t)$.

Observe that for $i = 1, \cdots, d$,

$$T(v_i) = \lambda v_i$$

= $0v_1 + \dots \lambda v_i + \dots + 0v_n$

Hence

$$A = \begin{pmatrix} \lambda & 0 & \cdots & 0 & * & \cdots & * \\ 0 & \lambda & \cdots & 0 & * & \cdots & * \\ \vdots & \vdots & \ddots & \vdots & * & \cdots & * \\ 0 & 0 & \cdots & \lambda & * & \cdots & * \\ \hline 0 & 0 & \cdots & 0 & * & \cdots & * \\ \vdots & \vdots & & \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & 0 & * & \cdots & * \end{pmatrix} = \begin{pmatrix} \lambda I_d & B \\ O & C \end{pmatrix}$$

for some matrices of the appropriate dimensions. Thus

$$p_T(t) = \det(A - tI_n) = \begin{pmatrix} (\lambda - t)I_d & B\\ O & C - tI_{n-d} \end{pmatrix}$$
$$= \det((\lambda - t)I_d) \det(C - tI_{n-d})$$
$$= (\lambda - t)^d \det(I_d) \det(c - tI_{n-d})$$
$$= (\lambda - t)^d \cdot p_C(t).$$

This proves that $(t - \lambda)^d$ divides $p_T(t)$. Since m, the multiplicity of λ , is by definition the largest value such that $(t - \lambda)^m$ divides $p_T(t)$, we have proved that $d \leq m$, i.e., $\dim(E_\lambda) < m$.

2 Theorems which I think is important

5 Theorem (5.3). Let $A \in M_{n \times n}(\mathbb{F})$.

- 1. $p_A(t)$ is a polynomial in $\mathbb{F}[t]$ of degree n.
- 2. The leading coefficient of $p_A(t)$ is $(-1)^n$.
- 3. The coefficient of t^{-1} is $(-1)^{n-1} \operatorname{tr}(A)$

6 Theorem (5.1). Suppose V is a finite-dimensional vector space over \mathbb{F} and $T \in L(V)$. T is diagonalizable iff V has an ordered basis consisting of eigenvectors of T.

3 Unfamiliar Definition

7 Definition (Eigenvector). Let $A \in M_{n \times n}(\mathbb{F})$. An eigenvector of A is any non-zero vector $v \in \mathbb{F}$ satisfying $Av \in \text{span}(v)$. The unique scalar $\lambda \in \mathbb{F}$ satisfying $Av = \lambda v$ is the eigenvalue of A corresponding to v.

8 Definition (Eigenvector II). Let V be a finite-dimensional vector space over \mathbb{F} and let $T \in L(V)$. An eigenvector of T is any nonzero vector $v \in V$ satisfying $T(v) \in \text{span}(v)$. The unique scalar $\lambda \in \mathbb{F}$ satisfying $T(v) = \lambda v$ is the eigenvalue of T corresponding to v.

9 Definition (Eigenspace). Suppose $T \in L(V)$.

1. Given an eigenvalue λ of T, the set

 $E_{\lambda} = \{ v \in V : T(v) = \lambda v \}$ = {eigenvectors of T corresponding to $\lambda \} \cup \{0\}.$

2. The spectrum of T is the set of eigenvalues of T.

10 Definition (Characteristic polynomial). Let $A \in M_{n \times n}(\mathbb{F})$. The characteristic polynomial of A is the expression det $(A - tI_n)$. It is denoted $p_A(t)$.

11 Definition (Similar). Suppose $A, B \in M_{n \times n}(\mathbb{F})$. We say that B is similar to A over F if there exists an invertible $Q \in M_{n \times n}(\mathbb{F})$ such that $B = Q^{-1}AQ$.

12 Definition (Split). A polynomial $f(t) \in \mathbb{F}[t]$ splits over \mathbb{F} if there exist scalars $c, a_1, \dots, a_n \in \mathbb{F}$ not necessarily distinct such that

$$f(t) = c(t - a_1) \cdots (t - a_n)$$

13 Definition (Multiplicity). Suppose $T \in L(V)$ and λ is an eigenvalue of T. The multiplicity of λ is the maximum value k such that $(t - \lambda)^k$ is a factor of $p_T(t)$.

14 Definition (Diagonalizable). Suppose V is finite-dimensional and $T \in L(V)$. T is diagonalizable if there exists an ordered basis β for V such that $[T]_{\beta}$ is a diagonal matrix.

Suppose $A \in M_{n \times n}(\mathbb{F})$. A is diagonalizable over \mathbb{F} if A is similar over \mathbb{F} to a diagonal matrix D.