CS 370 Final Definition, Theorem and Examples

FPNS (t,8,L,U) £0.d1ds ...d; x 8P where dy # 0, d; € {0,...,8 — 1}. IEEE Single Precision: 1,8,23,—126,127. IEEE
Double Precision: 1,11,52, —1022,1023.

AbsErr = |z — Z|. RelErr = @ MaxRelErr: Machine Epsilon. The smallest number that when added to 1 becomes

the next number B/2- B¢ “(wrﬁ = ¢ where 0] < E. pu(z) = (1 + J)z. If not in range (overflow | underflow)

P' = P+ 4ed”.  Markov Transition Matrix M = aP’ + (1 — a)fee”. One click:

pntl = Mp” p=Mp. (I—M)p=0.

Eigenvector z: Qx = Ax. Since p = Mp, hence has eigenvector 1. / p'=

Solving upper triangular matrix: back substitution. Solving lower triangular matrix: for- ® (

ward substitution. Gaussian Elimination.

LU factorization: any square matrix A can be factored into a product of an upper triangular and lower triangular matrices

such that LU = PA.

LU factorization Applications

1. Solving Az =b. Ax = b= PAx = Pb= LUx = Pb. Solve Lz = Pb. Solve Uz = z. LU factorization O(N?3) + forward
sub + back sub O(N?).

2. Solving AX = B. LU factorization O(N?3). Solve LUz; = Pb; which is O(N?) each.

LU factorization Example: note put the one that has greatest absolute value on top.
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Singular Value Decomposition: A = UXV. U,V are unitary matrices. Unitary matrix: M7 = M~

SVD Applications

1. The rank of A is the number of nonzero singular values

2. Lower-Rank Approximation using the SVD. If you want a rank-k approximation to A, simply set all singular values to
zero except for the largest k. (used for image compression)

3. query matching

Numerical Solution of ODEs. di’i—(tt) = f(t,y), y(to) = y.

Euler’s Method. Starting with the initial state, we can approximate the solution by taking small steps in time. yx41 =

Yk + hif(te, yk). Local error 41 = |[Yn(Tnt1) — Ynt+1|- Global error 2,11 = |yo(Tnt+1) — Ynt1|- The local error is

O(h?), the global error is O(h).

Euler’s Method Golf Example: (2(0),4(0)) = (0,0). Golfer hit the ball with initial velocity vector (v, vy). Dynamics Model:
dflit) = Uy, ngt(t) —g. Let z1 =2, 2 =y, 23 = ‘fl— = 92 Then
d 21 Vg 0
7 2= ft,2)=| = & z=1| 0
23 —g Uy
Let v, = 30,v, = 12,g = 9.81, h = 0.1. Then
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2D =W L nfty, V)= 12 | +01| 11.019 | = | 2.3019
11.019 —9.81 10.038

Modified Euler Method (improved euler OR 2nd-order Runge-kutta)

1. Start with an euler step. y¥, 1 = yn + hnf(tn, Yn)- Let fi = f(tn,yn).

2. fo= f( n+layn+1)

3 yn+1 = Yn + hn f1+f2

The local error is O(h?’) Global error is O(h?). Use taylor expansion to calculate local error.



Given n data points (z;,y;), 4 = 1,...,n with ; # x; if i # j, 3! polynomial of degree at most n—1, p(z) =c1 + 2z + ...+

cnx™ 1 such that p(x;) = y;.

Monomial Form: Vandermonde System: n equations, n unknowns. Lagrange Form: L;(z) = — (@ = @i )@ = Ti) oo

v —xim) (@ — Tig1) -
p(x) =377 Li(x)y;
Monomial drawback: solve a linear system, matrix entries gets larger as n gets bigger, difficult to invert as you include
more points, espicially if two points have similar x-values. Difficult to solve accurately.
Piecewise (polynomial, linear) interpolation; Cubic spline interpolation: S(x) is called a cubic spline if 1). S(x) is an
interpolant. 2). S(z) is piecewise cubic. 3). S(x) is twice differentiable.
There are 4n — 4 unknowns for all cubic pieces. There are 2n — 2 equations for interpolant, n — 2 for continuous of S’(x),
n — 2 for continuous of S”(x). The last 2 equations cam be 1). Clamped spline S’(z1) and S’(z,,) are specified. 2). Natural

spline S”(x1) = 8" (x,) = 0. 3). Periodic spline S’ (x1) = S'(zy), S"(x1) = S (z,) (assumes y; = y,,). 4). Combinations
3 3
Tipt1 — T — X : ; ;
Use pi(x) = az‘71( Z+6h- ) + ai( 6h'l) + bi(zit1 — x) + ¢;(x — x;—1). Interpolant constant gives b, = % — ai,l%,
7 7
= % - ai%. S”(z) is continuous by design.
h; hi + h; b s s
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Pi(Tiy1) = iy (Tip1) = a1 — + ai———— + a1 = -
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6 3 6 ay ho hy
hi  hithigr  hiss o = | yire—vit1  Yir1—ui where v1,v9 are slope at end points
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L 6 3 . - n—1 = ’UQ n—1 .

) tangent to point; — points, 3). tangent to pointy_1 — pointy

Bezier curve 1). passes through (zo,v0), (zn§,Yn),
=307 oo Ok (cos(25E2) + isin(Z2)), with C), = C_y.

Fourier series f(z) = ao+ Y oy [ak cos(%m) + by, sin( 22| =

Complex Inner Product: {(a, b) = Z nbn = (b, a).
W = (N — b, g, = SN TR — L W), B = S0 TR = (F, (b)),
1 1 1 1
oW W W L _
Discrete Fourier transform M = | | ,F=Mf, f=xMF. M~' = %M,
1 WN—l W(N—1)2 W(N—l)(N—l)
where M is the matrix formed by conjugating everything in M.
T 11 [ 0 1 r 71 [ 88 1 ¢ 18 1 [ 18 1 [ 18 1]
9 5 10 -2 -2 -8 —2-2
1 8 3 —3 —8 -2 -8
3 5 0 -3 -8 -8 —24++/2
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Least square y = [3 E(B) = rTr = ||r||?, differentiate and set to zero gives AT AB = ATy, to solve, multiply by
(ATA)"1 B =(ATA)!




