MATH 247 LECTURE NOTES

Zhongwei Zhao

My Lecture Notes for MATH 247 2017 Spring $\,$

August 2017

Lecture 1, May. 1

Will do multi-variable calculus, extend what you learned from MATH 147, 148 from $\mathbb{R} = \mathbb{R}^1$ to \mathbb{R}^n . The course has 3 parts:

1. Sequence, limits, continuity (also: sets in \mathbb{R}^n - open, closed, compact set)

2. Derivatives in \mathbb{R}^m (requires grasp of linear algebra)

3. Integrals (Connection between derivatives and integrals) Notation (Vectors).

$$\vec{x} = (x^{(1)}, x^{(2)}, \cdots, x^{(n)}) \in \mathbb{R}^n$$

Notation (Inner Product).

$$\vec{x}, \vec{y} \rangle = x^{(1)} y^{(1)} + x^{(2)} y^{(2)} + \dots + x^{(n)} y^{(n)}, \ \forall \vec{x}, \vec{y} \in \mathbb{R}^n$$

Notation (Norm).

$$||\vec{x}|| = \sqrt{\langle \vec{x}, \vec{x} \rangle} = \sqrt{\sum (x^{(i)})^2}$$

Some basic inequalities in \mathbb{R}^n

1.1 Proposition (Cauchy-Schwarz Inequality).

<

 $\mid \langle \vec{x} \,, \, \vec{y} \, \rangle \mid \, \leq \, || \, \vec{x} \, || \cdot || \, \vec{y} \, ||, \, \, \forall \vec{x}, \vec{y} \in \mathbb{R}^n$

Proof. If $\vec{y} = \vec{0}$, then we get 0 = 0.

So we will assume that $\vec{y} \neq \vec{0}$, hence that $||\vec{y}|| > 0$.

Define $h \colon \mathbb{R} \to \mathbb{R}$ by

$$h(t) = \langle \vec{x} - t\vec{y}, \, \vec{x} - t\vec{y} \, \rangle, \, t \in \mathbb{R}$$

Observe that $h(t) \ge 0, \ \forall t \in \mathbb{R}$ by positivity of the inner product.

But on the other hand, use bilinearity and get

$$h(t) = \langle \vec{x}, \vec{x} \rangle - \langle \vec{x}, t\vec{y} \rangle - \langle t\vec{y}, \vec{x} \rangle + \langle -t\vec{y}, -t\vec{y} \rangle$$

= $||\vec{x}||^2 - 2t\langle \vec{x}, \vec{y} \rangle + t^2 ||\vec{y}||^2$
= $at^2 - bt + c$

where $a = ||\vec{y}||^2$, $b = 2\langle \vec{x}, \vec{y} \rangle$, $c = ||\vec{x}||^2$.

So h(t) is a quadratic function of t, as $||\vec{y}||^2$ is strictly positive, and $h(t) \ge 0$ for all $t \in \mathbb{R}$. It follows that the discriminant $\Delta = b^2 - 4ac \le 0$.

Then

$$\langle \vec{x}, \vec{y} \rangle^2 \le ||\vec{x}||^2 ||\vec{y}||^2$$

Hence

$$|\langle \vec{x} \,, \, \vec{y} \,\rangle | \leq || \, \vec{x} \, ||| \, \vec{y} \, ||$$

1.2 Definition (Distance). Let $\vec{x} = (x^{(1)}, \dots, x^{(n)}), \vec{y} = (y^{(1)}, \dots, y^{(n)}) \in \mathbb{R}^n$. The distance between \vec{x} and \vec{y} is

$$d(\vec{x}, \vec{y}) = ||\vec{x} - \vec{y}|| = \sqrt{\sum (x^{(i)} - y^{(i)})^2}$$

1.3 Proposition (Triangle Inequality).

Form 1

$$||\vec{x} + \vec{y}|| \le ||\vec{x}|| + ||\vec{y}||, \ \forall \vec{x}, \vec{y} \in \mathbb{R}^n.$$

Form 2

$$d(\vec{x}, \vec{z}) \le d(\vec{x}, \vec{y}) + d(\vec{y}, \vec{z}), \ \forall \vec{x}, \vec{y}, \vec{z} \in \mathbb{R}^n$$

Proof.

$$\begin{split} ||\vec{x} + \vec{y}||^{2} &= \langle \vec{x} + \vec{y}, \, \vec{x} + \vec{y} \rangle \\ &= \langle \vec{x}, \, \vec{x} \rangle + \langle \vec{x}, \, \vec{y} \rangle + \langle \vec{y}, \, \vec{x} \rangle + \langle \vec{y}, \, \vec{x} \rangle \\ &= ||\vec{x}||^{2} + 2 \langle \vec{x}, \, \vec{y} \rangle + ||\vec{y}||^{2} \\ &\leq ||\vec{x}||^{2} + 2 |\langle \vec{x}, \, \vec{y} \rangle | + ||\vec{y}||^{2} \\ &\leq ||\vec{x}||^{2} + 2 ||\vec{x}||||\vec{y}|| + ||\vec{y}||^{2} \\ &= (||\vec{x}|| + ||\vec{y}||)^{2}. \end{split}$$

So we proved that

$$||\vec{x} + \vec{y}||^2 \le (||x|| + ||y||)^2$$

Take the square root on both side and we get form 1.

Form 2: Given $\vec{x}, \vec{y}, \vec{z} \in \mathbb{R}^n$. Wrote

$$\begin{aligned} d(\vec{x}, \vec{z}) &= \mid\mid \vec{x} - \vec{z} \mid\mid \\ &= \mid\mid (\vec{x} - \vec{y}) + (\vec{y} - \vec{z}) \mid \\ &\leq \mid\mid \vec{x} - \vec{y} \mid\mid + \mid\mid \vec{y} - \vec{z} \mid\mid \\ &= d(\vec{x}, \vec{y}) + d(\vec{y}, \vec{z}). \end{aligned}$$

1.4 Remark. Both propositions extends to "polygon inequalities".

For every $\vec{x}, \vec{y}, \vec{z}, \vec{w} \in \mathbb{R}^n$, we have

$$d(\vec{x}, \vec{w}) \le d(\vec{x}, \vec{y}) + d(\vec{y}, \vec{z}) + d(\vec{z}, \vec{w})$$

Proof. The proof is by induction on the number of points involved in the polygonal path. Notation. For $\vec{x} = (x^{(1)}, \dots, x^{(n)}) \in \mathbb{R}^n$ denote

$$||\vec{x}||_{1} = |x^{(1)}| + \dots + |x^{(n)}|$$
$$||\vec{x}||_{\infty} = \max(x^{(1)} + \dots + x^{(n)})$$

Aside. For every $p\in [1,\infty)$ denote

$$||\vec{x}||_p = \left(|x^{(1)}|^p + \dots + |x^{(n)}|^p \right)^{1/p}.$$

Usual norm is $||\vec{x}||_2$

1.5 Exercise. Prove that for every $\vec{x} \in \mathbb{R}^n$,

$$||\vec{x}||_{\infty} \le ||\vec{x}|| \le ||\vec{x}||_1 \le n||\vec{x}||_{\infty}$$

Lecture 2, May. 3

Sequences in \mathbb{R}^n

We use notation $(\vec{x}_k)_{k=1}^{\infty}$ to mean that we have $\vec{x}_1, \vec{x}_2, \cdots, \vec{x}_k, \cdots$ in \mathbb{R}^n (It is allowed to have $\vec{x}_i = \vec{x}_j$ for $i \neq j$).

2.1 Definition. Let $(\vec{x}_k)_{k=1}^{\infty}$ be a sequence in \mathbb{R}^n . Let \vec{a} in \mathbb{R}^n . Consider the sequence of real numbers $(||\vec{x} - \vec{a}||)_{k=1}^{\infty}$. We say that $(\vec{x}_k)_{k=1}^{\infty}$ converges to \vec{a} to mean that $||\vec{x} - \vec{a}|| \to 0$ as $k \to \infty$.

2.2 Remark.

$$\forall \epsilon > 0, \exists k_0 \in \mathbb{N} \text{ such that } \forall k \ge k_0, || \vec{x}_k - \vec{a} || < \epsilon$$

2.3 Definition (Open Ball of center \vec{a} and radius r). For $\vec{a} \in \mathbb{R}^m$ and r > 0 denote

$$\mathbf{B}(\vec{a}, r) = \{ \vec{x} \in \mathbb{R}^m \mid || \, \vec{x} - \vec{a} \, || < r \}$$

2.4 Definition (Closed Ball of center \vec{a} and radius r). For $\vec{a} \in \mathbb{R}^m$ and r > 0 denote

$$\overline{\mathbf{B}}(\vec{a},r) = \{ \vec{x} \in \mathbb{R}^m \mid || \vec{x} - \vec{a} || \le r \},\$$

2.5 *Remark.* Instead of $||\vec{x}_k - \vec{a}|| < \epsilon$ we can also write $d(\vec{x}_k, \vec{a}) < \epsilon$, or $\vec{x}_k \in B(\vec{a}, \epsilon)$.

2.6 Definition (Component Sequences). Let $(\vec{x}_k)_{k=1}^{\infty}$ be a sequence in \mathbb{R}^n . We write explicitly

$$\vec{x}_1 = (x_1^{(1)}, x_1^{(2)}, \cdots, x_1^{(n)})$$
$$\vec{x}_2 = (x_2^{(1)}, x_2^{(2)}, \cdots, x_2^{(n)})$$
$$\cdots$$
$$\vec{x}_k = (x_k^{(1)}, x_k^{(2)}, \cdots, x_k^{(n)})$$

We get *n* sequences in \mathbb{R}^n : $(x_k^{(1)})_{k=1}^{\infty}, (x_k^{(2)})_{k=1}^{\infty}, \cdots, (x_k^{(n)})_{k=1}^{\infty}$. They are called the *component sequences* of $(\vec{x}_k)_{k=1}^{\infty}$.

(Note: If conversely someone gives you n sequences in \mathbb{R} , then you can assemble them into sequence in \mathbb{R}^n)

2.7 Proposition. Let $(\vec{x}_k)_{k=1}^{\infty}$ be a sequence in \mathbb{R}^n , $\vec{a} \in \mathbb{R}^n$. Then we have

$$\vec{x}_k \to \vec{a} \iff \forall i \ x_k^{(i)} \to a^{(i)}$$

Proof. (\Rightarrow) We have $\vec{x}_k \to \vec{a}$ in \mathbb{R}^n , we want to show that $x_k^{(i)} \to a^{(i)}$ in \mathbb{R} for all $i \in [1, n]$.

Fix *i*. Observe that for every $k \ge 1$,

$$\left| x_{k}^{(i)} - a^{(i)} \right| = \left| (\vec{x}_{k} - \vec{a})^{(i)} \right| \le ||\vec{x}_{k} - \vec{a}||$$

So for our fixed $i \in [1, n]$ we found that

$$0 \le \left| x_k^{(i)} - a^{(i)} \right| \le ||\vec{x}_k - \vec{a}|| \to 0$$

Use squeeze to get $\left| \begin{array}{c} x_k^{(i)} - a^{(i)} \end{array} \right| \to 0$. Hence $x_k^{(i)} \to a^{(i)}$.

 (\Leftarrow) First we have

$$\left| x_k^{(1)} - a^{(1)} \right| + \left| x_k^{(2)} - a^{(2)} \right| + \dots + \left| x_k^{(n)} - a^{(n)} \right| \to 0$$

 $||\vec{x}_k - \vec{a}||_1 \to 0$

Hence

But

$$||\vec{x}_k - \vec{a}|| \le ||\vec{x}_k - \vec{a}||_1, \ \forall k \in \mathbb{N}$$

So we get

$$0 \le ||\vec{x}_k - \vec{a}|| \le ||\vec{x}_k - \vec{a}||_1 \to 0$$

Use squeeze theorem to get $||\vec{x}_k - \vec{a}||$ hence $\vec{x}_k \to \vec{a}$.

2.8 Remark. Another description of convergence of sequence in \mathbb{R}^n is provided by the Cauchy condition (done in Math 147 for sequence in \mathbb{R}). Can upgrade to sequence in \mathbb{R}^n by taking components.

Lecture 3, May. 5

Subsequences and the Bolzano-Weierstrass Theorem

3.1 Definition (Subsequence). Let $(\vec{x}_k)_{k=1}^{\infty}$ be a sequence in \mathbb{R}^n . A subsequece of $(\vec{x}_k)_{k=1}^{\infty}$ is a sequence of the form $(\vec{x}_{k(p)})_{p=1}^{\infty}$ for some $1 \le k(1) < k(2) < \cdots < k(p) < \cdots$.

Notation. Instead of $(\vec{x}_{k(p)})_{p=1}^{\infty}$ we may write

 $(\vec{x}_k)_{k\in P}$

where $P = \{k(1), k(2), \dots, k(p), \dots\}$

How to avoid to talk about "sub-subsequences": from the subsequence $(\vec{x}_k)_{k \in P}$ can trim down to $(\vec{x}_k)_{k \in Q}$ where $Q \subseteq P$ is an infinite subset.

3.2 Remark. Let $(\vec{x}_k)_{k=1}^{\infty}$ be a sequence in \mathbb{R}^n , $\vec{a} \in \mathbb{R}^n$. If $\vec{x}_k \to \vec{a}$, then for every subsequence $(\vec{x}_{k(p)})_{p=1}^{\infty}$, we have $\vec{x}_{k(p)} \to \vec{a}$ as well.

3.3 Remark (Review from Math 147). Recall that a sequence $(t_k)_{k=1}^{\infty}$ in \mathbb{R} is said to be bounded when $\exists r > 0$ such that $t_k \in [-r, r], \forall k$.

3.4 Definition. A sequence $(\vec{x}_k)_{k=1}^{\infty}$ in \mathbb{R}^n is said to be bounded when $\exists r \geq 0$ such that $||\vec{x}_k|| \leq r, \forall k \in \mathbb{N}$. Note. In dimension n = 1, this gives back the condition $|x_k| \leq r, \forall k \in \mathbb{N}$, that is $t_k \in [-r, r], \forall k$, which defines bounded sequences in \mathbb{R} .

3.5 Proposition. Let $(\vec{x}_k)_{k=1}^{\infty}$ be a sequence in \mathbb{R}^n , and consider its n component sequences

$$(x_k^{(1)})_{k=1}^{\infty}, \cdots, (x_k^{(n)})_{k=1}^{\infty}$$

Then

$$\left(\begin{array}{c} (\vec{x}_k)_{k=1}^{\infty} \text{ is bounded} \\ in \mathbb{R}^n \end{array}\right) \Leftrightarrow \left(\begin{array}{c} \text{each of } (x_k^{(1)})_{k=1}^{\infty}, \dots, (x_k^{(n)})_{k=1}^{\infty} \text{ is} \\ \text{bounded in } \mathbb{R} \end{array}\right)$$

Proof. Exercise.

3.6 Lemma. Let $(\vec{x}_k)_{k=1}^{\infty}$ be a sequence \mathbb{R}^{n+1} , and for every $k \in \mathbb{N}$ write $\vec{x}_k = (\vec{y}_k, t_k)$ where $\vec{y}_k = (x_k^{(1)}, \dots, x_k^{(n)}) \in \mathbb{R}^n$, $t_k = x_k^{(k+1)} \in \mathbb{R}$. Suppose that $\vec{y}_k \to \vec{b} \in \mathbb{R}^n$ and $t_k \to t \in \mathbb{R}$. Then $\vec{x}_k \to \vec{a}$ where $\vec{a} = (\vec{b}, t)$.

Proof. Since $\vec{y}_k \to \vec{b}$, then $x_k^{(i)} \to b^{(i)}$ for all $1 \le i \le n$. Since $t_k \to t$, then $x_k^{(n+1)} \to b^{(n+1)}$. Then $x_k^{(i)} \to b^{(i)}$ for all $1 \le i \le n+1$. Hence $\vec{x}_k \to \vec{a}$ where $\vec{a} = (\vec{b}, t)$.

3.7 Theorem (Bolzano-Weierstrass in \mathbb{R}^n). Let $(\vec{x}_k)_{k=1}^{\infty}$ be a bounded sequence in \mathbb{R}^n . Then we can find $1 \leq k(1) < k(2) < \cdots < k(p) < \cdots$ such that the subsequence $(\vec{x}_{k(p)})_{p=1}^{\infty}$ is convergent (to some limit in \mathbb{R}^n).

Proof. By induction on n (dimension of the space).

Base case n = 1 was done in Math 147. Here we focus on the induction step $n \Rightarrow (n + 1)$.

Assume B-W holds in \mathbb{R}^n . Fix a bounded sequence $(\vec{x}_k)_{k=1}^{\infty}$ in \mathbb{R}^{n+1} . Write every $\vec{x}_k = (\vec{y}_k, t_k)$ where $\vec{y}_k = (x_k^{(1)}, \cdots, x_k^{(n)}) \in \mathbb{R}^n$ and $t_k = x_k^{(n+1)} \in \mathbb{R}$.

Claim that $(\vec{y}_k)_{k=1}^{\infty}$ is a bounded sequence in \mathbb{R}^n and $(t_k)_{k=1}^{\infty}$ is a bounded sequence in \mathbb{R} . Since $(\vec{x}_k)_{k=1}^{\infty}$ is bounded, then $\exists r > 0$ such that $||\vec{x}_k|| \leq r$, $\forall k \in \mathbb{N}$. But for every $k \in \mathbb{N}$ we have $r^2 \geq ||\vec{x}_k||^2 = ||\vec{y}_k||^2 + t_k^2$. Then $||\vec{y}_k|| \leq r$ and $|t_k| < r$. It follows that $(\vec{y}_k)_{k=1}^{\infty}$ is a bounded sequence in \mathbb{R}^n and $(t_k)_{k=1}^{\infty}$ is a bounded sequence in \mathbb{R} .

Since B-W holds in \mathbb{R}^n , we can find an infinite set $M = \{k(1), k(2), \dots\} \in \mathbb{N}$ such that the subsequence $(\vec{y}_{k(m)})_{m=1}^{\infty}$ of $(\vec{y}_k)_{k=1}^{\infty}$ is convergent to some limit $\vec{b} \in \mathbb{R}^n$.

Consider the sequence of real numbers $(t_k)_{k \in M}$. It is a bounded sequence in \mathbb{R} . Apply to it the B-W theorem in \mathbb{R} , and then we can find an infinite set $P \subseteq M$ such that the subsequence $(t_k)_{k \in P}$ is convergent to a limit $t \in \mathbb{R}$.

Since $\lim_{k\to\infty, k\in M} \vec{y}_k \to \vec{b}$ and $P \subseteq M$, we have $\lim_{k\to\infty, k\in P} \to \vec{y}_k = \vec{b}$ as well. because $(\vec{y}_k)_{k\in P}$ is a subsequence of $(\vec{y}_k)_{k\in M}$.

Now we have $\lim_{k\to\infty, k\in P} \vec{y}_k = \vec{b}$ and $\lim_{k\to\infty, k\in P} t_k = k$. Then by the previous lemma,

$$\lim_{k \to \infty, \, k \in P} (\vec{y}_k, t_k) = (\vec{b}, t).$$

Then the subsequence $(\vec{x}_k)_{k \in P}$ of $(\vec{x}_k)_{k=1}^{\infty}$ is convergent to $\vec{a} = (\vec{b}, t) \in \mathbb{R}^{n+1}$.

Lecture 4, May. 10

Continuity (of a function at a point) and Respect (for sequences)

4.1 Definition. Let $m, n \in \mathbb{N}$, $A \subseteq \mathbb{R}^n$, $f: A \to \mathbb{R}^m$, $\vec{a} \in A$. We say that f is <u>continuous at</u> \vec{a} to mean that for all $\epsilon > 0$ there exists a $\delta > 0$ such that $||f(\vec{x}) - f(\vec{a})|| < \epsilon$ for all $\vec{x} \in A$ with $||\vec{x} - \vec{a}|| < \delta$.

Geometric interpretation: given $\epsilon > 0$, we need to find $\delta > 0$ such that

$$f(A \cap B(\vec{a}: \delta)) \subseteq B(f(\vec{a}): \epsilon).$$

4.2 Definition. Let $m, n \in \mathbb{N}$, $A \subseteq \mathbb{R}^n$, $f: A \to \mathbb{R}^m$, $\vec{a} \in A$. We say that f respects sequences in A which converges to \vec{a} to mean that whenever $(\vec{x}_k)_{k=1}^{\infty}$ in A is such that $\vec{x}_k \to \vec{a}$, it follows that $f(\vec{x}_k) \to f(\vec{a})$ in \mathbb{R}^n .

4.3 Proposition. Let $m, n \in \mathbb{N}$, $A \subseteq \mathbb{R}^n$, $f: A \to \mathbb{R}^m$, $\vec{a} \in A$. Then f respects sequence that converges to \vec{a} if and only if f is continuous at \vec{a} .

Proof. (\Rightarrow) Assume that f respects sequence that converges to \vec{a} . Fix $\epsilon > 0$.

Assume, for a contradiction, that f is not continuous at \vec{a} . That is for all $\delta > 0$, there exists $\vec{x} \in A$ and $||\vec{x} - \vec{a}|| < \delta$ with that $||f((\vec{x}) - f(\vec{a})|| \ge \epsilon$.

Let $\{\delta_n > 0\}$ be a sequence that converge to 0. For each δ_n there exists $\vec{x}_n \in A$ such that $||\vec{x}_n - \vec{a}|| < \delta$ with that $||f((\vec{x}_n) - f(\vec{a})|| \ge \epsilon$. Since $\lim_{k\to\infty} ||\vec{x}_k - \vec{a}|| = 0$, we have \vec{x}_k converges to \vec{a} . Since f respects sequence that converges to \vec{a} , $\{f(\vec{x}_n)\}$ should also converges. However, $||f(\vec{x}_n) - f(\vec{a})|| \ge \epsilon$ for all n. It follows by contradiction that f is continuous at \vec{a} .

 (\Leftarrow) Assignment (direct application on the definition).

4.4 Definition. Let $A \subseteq \mathbb{R}^n$, $f: A \to \mathbb{R}^m$. For every $\vec{x} \in A$ write explicitly $f(\vec{x}) = (f^{(1)}(\vec{x}), \cdots, f^{(m)}(x)) \in \mathbb{R}^m$. Then $f^{(1)}, \cdots, f^{(m)}: A \to \mathbb{R}$ are called the component functions of f.

4.5 Proposition. Let $A \subseteq \mathbb{R}^n$, $f: A \to \mathbb{R}^m$, and $f^{(1)}, \dots, f^{(m)}: A \to \mathbb{R}$ as above. Let \vec{a} be a point in A. Then

$$\begin{pmatrix} f \text{ has continuity} \\ at \vec{a} \end{pmatrix} \Leftrightarrow \begin{pmatrix} each \text{ of } f^{(1)}, \cdots, f^{(m)} \text{ has} \\ continuity \text{ at } \vec{a} \end{pmatrix}.$$

$$f \text{ respects sequences} \\ at \vec{a} \end{pmatrix} \Leftrightarrow \begin{pmatrix} each \text{ of } f^{(1)}, \cdots, f^{(m)} \text{ respects} \\ sequences \text{ at } \vec{a} \end{pmatrix}$$

Claim.

Proof. Take
$$(\vec{x}_k)_{k=1}^{\infty}$$
 in A such that $\vec{x}_k \to \vec{a}$. For every $k \in N$, write $f(\vec{x}_k) = (f^{(1)}(\vec{x}_k), \cdots, f^{(m)}(\vec{x}_k))$. Now apply Proposition 2.5, which says

$$f(\vec{x}_k) \to f(\vec{a}) \Leftrightarrow f^{(i)}(\vec{x}_k) \to f^{(i)}(\vec{a})$$

Then the claim follows.

Claim.

$$\left(\begin{array}{c}f \text{ has continuity}\\\text{at } \vec{a}\end{array}\right) \Leftrightarrow \left(\begin{array}{c}\text{each of } f^{(1)}, \cdots, f^{(m)} \text{ has }\\\text{continuity at } \vec{a}\end{array}\right).$$

Proof.

$$\begin{pmatrix} f \text{ has continuity} \\ \text{at } \vec{a} \end{pmatrix} \Leftrightarrow \begin{pmatrix} f \text{ respects continuity} \\ \text{at } \vec{a} \end{pmatrix} \Leftrightarrow \\ \begin{pmatrix} \text{ each of } f^{(1)}, \cdots, f^{(m)} \text{ respects} \\ \text{ sequences at } \vec{a} \end{pmatrix} \Leftrightarrow \begin{pmatrix} \text{ each of } f^{(1)}, \cdots, f^{(m)} \text{ has} \\ \text{ continuity at } \vec{a} \end{pmatrix}.$$

4.6 Definition. Let $A \subseteq \mathbb{R}^n$. $f: A \to \mathbb{R}^m$. We say that f is continuous on A to mean that f is continuous at every $\vec{a} \in A$.

4.7 Remark. We have two explicit description for "f continuous on A".

1. Given $\vec{a} \in A$ and $\epsilon > 0$, we can find $\delta > 0$ such that

$$||f(\vec{x}) - f(\vec{a})|| < \epsilon$$

for all $\vec{x} \in A$ with $|| \vec{x} - \vec{a} || < \delta$.

2. Whenever $(\vec{x}_k)_{k=1}^{\infty}$ in A has $\vec{x}_k \to \vec{a}$, it follows that $f(\vec{x}_k) \to f(\vec{a})$ in \mathbb{R}^m . (f respects all the convergent sequnce in A).

4.8 Remark (Stronger form of continuity). Let $A \subseteq \mathbb{R}^n$, $f: A \to \mathbb{R}^m$. We say that f is uniformly continuous on A to mean that given $\epsilon > 0$, we can find $\delta > 0$ such that

$$||f(\vec{x}_1) - f(\vec{x}_2)|| < \epsilon$$

for all $\vec{x}_1, \vec{x}_2 \in A$ with $||\vec{x}_1 - \vec{x}_2|| < \delta$.

4.9 Remark. Pick a $c \ge 0$. We say that f is c-Lipschitz on A to mean that

$$||f(\vec{x}_1) - f(\vec{x}_2)|| \le c \cdot ||\vec{x}_1 - \vec{x}_2||, \ \forall \vec{x}_1, \vec{x}_2 \in A.$$

4.10 Remark. We say that f is Lipschitz on A to mean that $\exists c \geq 0$ such that f is c-Lipschitz. 4.11 Remark. Easy to check

f lipschitz on $A \Rightarrow f$ uniformly continuous on $A \Rightarrow f$ continuous on A

Lecture 5, May. 15

Interior, closure, boundary for subsets of bR^n

5.1 Definition. Let A be a subset of \mathbb{R}^n . A point $\vec{a} \in A$ is said to be an *interior point* of A when there exists r > 0 such that $B(\vec{a}, r) \subseteq A$. The set of all interior points of A is called the *interior* of A denoted by int(A).

A point $\vec{b} \in \mathbb{R}^n$ is said to be *adherent* to A when it has the property that $B(\vec{b}, r) \cap A \neq \emptyset$, $\forall r > 0$. The set of all points in \mathbb{R}^n that are adherent to A is called the *closure of* A denoted as cl(A).

5.2 Remark. For every $A \subseteq \mathbb{R}^n$ we have $int(A) \subseteq A \subseteq cl(A)$.

5.3 Definition. The set-difference $cl(A) \setminus int(A)$ is called the *boundary* of A, denoted as bd(A).

5.4 Example. Say m = 2. Let

$$A = \{(s,t) \mid s,t \in \mathbb{R}, \ t > 0\} \cup \{(s,0) \mid s \in \mathbb{R}, \ s \ge 0\}.$$

Calculate int(A), cl(A), bd(A).

Solution.

$$int(A) = \{(s,t) \mid s,t \in \mathbb{R}, \ t > 0\}$$
$$cl(A) = \{(s,t) \mid s,t \in \mathbb{R}, \ t \ge 0\}$$
$$bd(A) = \{(s,0) \mid s \in \mathbb{R}\}$$

5.5 Proposition (Duality interior-closure). For every $A \subseteq \mathbb{R}^n$ we have that

$$\operatorname{int}(\mathbb{R}^n \setminus A) = \mathbb{R}^n \setminus \operatorname{cl}(A)$$
$$\operatorname{cl}(\mathbb{R}^n \setminus A) = \mathbb{R}^n \setminus \operatorname{int}(A)$$

Proof. We first prove that $\operatorname{int}(\mathbb{R}^n \setminus A) \subseteq \mathbb{R}^n \setminus \operatorname{cl}(A)$. Take $\vec{b} \in \operatorname{int}(\mathbb{R}^n \setminus A)$. Then $\exists r > 0$ such that $\operatorname{B}(\vec{b},r) \subseteq \mathbb{R}^n \setminus A$. For this r > 0, observe that $\operatorname{B}(\vec{b},r) \cap A = \emptyset$. Then $\vec{b} \notin \operatorname{cl}(A)$ which means that $\vec{b} \in \mathbb{R}^n \setminus \operatorname{cl}(A)$.

Take $\vec{b} \in \mathbb{R}^n \setminus A$. Then $b \notin cl(A)$. Then $\exists r > 0$ such that $B(\vec{b}, r) \cap A = \emptyset$. For this r, we have $B(\vec{b}, r) \subseteq \mathbb{R}^n \setminus A$. Then $\vec{b} \in int(\mathbb{R}^n \setminus A)$.

Therefore $int(\mathbb{R}^n \setminus A) = \mathbb{R}^n \setminus cl(A)$.

5.6 Corollary. For every $A \subseteq \mathbb{R}^n$, we have $bd(A) = cl(A) \cap cl(\mathbb{R}^n \setminus A)$.

For every $A \subseteq \mathbb{R}^n$, we have $\operatorname{bd}(A) = \operatorname{bd}(\mathbb{R}^n \setminus A)$.

Proof.

$$bd(A) = cl(A) \setminus int(A)$$
$$= cl(A) \cap (\mathbb{R}^n \setminus int(A))$$
$$= cl(A) \cap cl(\mathbb{R}^n \setminus A)$$

$$\begin{aligned} \operatorname{bd}(\mathbb{R}^n \setminus A) &= \operatorname{cl}(\mathbb{R}^n \setminus A) \cap \operatorname{cl}(\mathbb{R}^n \setminus (\mathbb{R}^n \setminus A)) \\ &= \operatorname{cl}(\mathbb{R}^n \setminus A) \cap \operatorname{cl}(A) \\ &= \operatorname{cl}(A) \cap \operatorname{cl}(\mathbb{R}^n \setminus A) \end{aligned} = \operatorname{bd}(A) \end{aligned}$$

(Something missing).

Lecture 6, May. 17

Open and closed subsets of \mathbb{R}^n

6.1 Definition. $A \subseteq \mathbb{R}^n$ is said to be *open* when it satisfied A = int(A). That is A is open if and only if every $\vec{a} \in A$ is an interior point of A.

 $A \subseteq \mathbb{R}^n$ is said to be *closed* when it satisfied A = cl(A). That is A is closed if and only of A has no adherent points $\vec{b} \in \mathbb{R}^n \setminus A$.

Most subsets of \mathbb{R}^n are neither open or closed.

In particular, if you have to prove A is closed, it will not suffices to prove A is not open.

6.2 Proposition. For $A \subseteq \mathbb{R}^n$, we have A is closed if and only if $\mathbb{R}^n \setminus A$ is open.

Proof. (\Rightarrow) A is closed, then cl(A) = A. But then $int(\mathbb{R}^n \setminus A) = \mathbb{R}^n \setminus cl(A) = \mathbb{R}^n \setminus A$. So we get $int(\mathbb{R}^n \setminus A) = \mathbb{R}^n \setminus A$, hence $\mathbb{R}^n \setminus A$ is open.

 $(\Leftarrow) \mathbb{R}^n \setminus A$ is open. then $\operatorname{int}(\mathbb{R}^n \setminus A) = \mathbb{R}^n \setminus A$, then $\mathbb{R}^n \setminus \operatorname{cl}(A) = \mathbb{R}^n \setminus A$. Then $\operatorname{cl}(A) = A$ hence A is closed.

6.3 Definition. We say that a set $A \subseteq \mathbb{R}^n$ has the "no-escape" property for sequences to mean that whenever $(\vec{x}_k)_{k=1}^{\infty}$ is a sequence in A that converge to $\vec{b} \in \mathbb{R}^n$, then it follows that $\vec{b} \in A$.

6.4 Proposition. For $A \subseteq \mathbb{R}^n$ we have A is closed if and only if A has no-escape property.

Proof. Exercise.

Lecture 7, May. 19

A new look at interior and closure

7.1 Lemma. Let $A \subseteq \mathbb{R}^n$. Assume that D is an open set. If $D \subseteq A$, then $D \subseteq int(A)$.

Proof. Call int(A) = T. If $\vec{x} \in D$,

7.2 Lemma. $A \subseteq \mathbb{R}^n$. int(A) is an open set.

7.3 Proposition. For every $A \subseteq \mathbb{R}^n$. The set int(A) is the largest open set contained in A.

7.4 Proposition. For every $A \subseteq \mathbb{R}^n$, the set cl(A) is the smallest closed set which contains A.

Proof. Let $M = \mathbb{R}^n \setminus A$. We apply Proposition 7.3 to M. It says that

1. $int(M) \subseteq M$ and int(M) is open.

2. If $D \subseteq \mathbb{R}^n$ is an open set such that $D \subseteq M$, then it follows that $D \subseteq int(M)$.

 $cl(A) \supseteq A$ known from lecture 5.

 $cl(A) = cl(\mathbb{R}^n \setminus M) = \mathbb{R}^n \setminus int(M)$. Since int(M) is closed, then cl(A) is closed.

let $F \subseteq \mathbb{R}^n$ be a closed set such that $F \supseteq A$. Put $D = \mathbb{R}^n \setminus F$. Then D is open and $D \subseteq M$. Then $\mathbb{R}^n \setminus D \supseteq \mathbb{R}^n \setminus \operatorname{int}(M) = \operatorname{cl}(A)$.

Lecture 8, May. 23

Compact subsets of \mathbb{R}^n

8.1 Definition. $A \subseteq \mathbb{R}^n$ is said to be bounded when $\exists r \ge 0$ such that $||\vec{x}|| \le r, \ \forall \vec{x} \in A$.

8.2 Definition. $A \subseteq \mathbb{R}^n$ is said to be compact when it is closed and bounded.

Note. There are several other equivalent description of compactness, and some of them extends to more general frameworks

8.3 Definition. $A \subseteq \mathbb{R}^n$ is said to be *sequentially compact* when the following happens: For every sequence $(\vec{x}_k)_{k=1}^{\infty} \in A$ one can find a convergent subsequence $(\vec{x}_{k(p)})_{p=1}^{\infty}$ such that the limit $\vec{a} = \lim_{p \to \infty} \vec{x}_{k(p)}$ still is in A.

8.4 Theorem. For $A \subseteq \mathbb{R}^n$ have that

A is compact \Leftrightarrow A has sequential compactness

Proof. (\Rightarrow) Suppose A is closed and bounded. Let $(\vec{x}_k)_{k=1}^{\infty}$ be a sequence in A. Then $(\vec{x}_k)_{k=1}^{\infty}$ is bounded. Then we can extract a convergent subsequence $(\vec{x}_{k(p)})_{p=1}^{\infty}$ (Bolzano-Weierstrass). Denote $\lim_{p\to\infty} \vec{x}_{k(p)} = \vec{a}$. Since A is closed and $(\vec{x}_{k(p)})_{p=1}^{\infty}$ is a sequence in A, it follows that $\vec{a} \in A$ (by the no-escape property of A).

 (\Leftarrow) Suppose that A has sequential compactness.

Assume by contradiction that A is not closed, hence a does not have the no-esape property for sequences. So there exists sequence $(\vec{x}_k)_{k=1}^{\infty} \in A$ with $\lim_{k\to\infty} \vec{x}_k = \vec{b} \in \mathbb{R}^n \setminus A$. Property sequetial compactness says that we can find $(\vec{x}_{k(p)})_{p=1}^{\infty}$ that converges to a limit $\vec{a} \in A$. But also have that $\vec{x}_k \to \vec{b} \Rightarrow \vec{x}_{k(p)} \to \vec{b}$. (Contradiction.)

8.5 Proposition. Let $A \subseteq \mathbb{R}^n$ be compact and let $f: A \to \mathbb{R}^n$ be a continuous function. Consider the image-set $M = f(A) = \{\vec{y} \in \mathbb{R}^n \mid \exists \vec{x}, f(\vec{x}) = \vec{y}\}$. Then M is a compact subset of \mathbb{R}^n .

Proof. We will verify that M is sequentially compact. So fix a sequence $(\vec{y}_k)_{k=1}^{\infty}$ in M. We need to find a convergent subsequence $(\vec{y}_{k(p)})_{p=1}^{\infty}$ with limit still in M.

For every $k \in \mathbb{N}$, we have $\vec{y}_k \in M = f(A)$. Hence $\exists \vec{x}_k \in A$ such that $f(\vec{x}_k) = \vec{y}_k$.

Since A is compact, hence it is sequentially compact. So for the sequence $(\vec{x}_k)_{k=1}^{\infty}$ in A we can find $1 \le k(1) \le k(2) \le \cdots$ such that $\vec{x}_{k(p)} \to \vec{a} \in A$.

Since f is continuous on A, hence it respects convergence of sequences in A. It follows that $f(\vec{x}_{k(p)}) \rightarrow f(\vec{a})$. But $f(\vec{x}_{k(p)}) = \vec{y}_{k(p)}$. Thus $\vec{y}_{k(p)} \rightarrow f(\vec{a}) \in M$.

8.6 Definition. $A \subseteq \mathbb{R}^n, f \colon A \to \mathbb{R}.$

1. $\vec{a} \in A$ is said to be a point of global minimum for f on A when $f(\vec{a}) \leq f(\vec{x})$ for all $\vec{x} \in A$

2. $\vec{a} \in A$ is said to be a point of global maximum for f on A when $f(\vec{x}) \leq f(\vec{a})$ for all $\vec{x} \in A$

8.7 Remark. Points of global min/max may or may not exist. When they exist, they may or may not be unique.

8.8 Theorem (E.V.T.). $A \subseteq \mathbb{R}^n$ compact, $f: A \to \mathbb{R}$ continuous. Then f has at least one point of global minimum and at least one point of global maximum on A.

8.9 Lemma. Let K be a non-empty compact subset of \mathbb{R} . Then $\exists \alpha, \beta \in K$ such that $\alpha \leq t \leq \beta$, $\forall t \in K$.

Proof. Since K is compact, then K is closed and bounded. Then exists r > 0 such that $K \subseteq [-r, r]$. Then K has lower bounds and upper bounds. Then K has a least upper bound $\beta = \sup(K)$ and a greatest lower bound $a = \inf(K)$. For every $k \in \mathbb{N}$, we have $(\beta - 1/k, \beta] \cap K \neq \emptyset$. Hence we can construct a sequence in K that converges to β . Since K is closed, it has the no-escape property. Hence $\beta \in K$.

Proof of E.V.T.. We want to prove $\exists \vec{a}, \vec{b} \in A$ such that $f(\vec{a}) \leq f(\vec{x}) \leq f(\vec{b}), \forall \vec{x} \in A$.

Consider image-set $K = f(A) = \subseteq \mathbb{R}$. Then K is a non-empty compact subset of \mathbb{R} . Consider $\alpha = \min(K)$, $\beta = \max(K)$. we have $\alpha, \beta \in K = f(A)$. Hence $\exists \vec{a}, \vec{b} \in A$ such that $f(\vec{a}) = \alpha$ and $f(\vec{b}) = \beta$. But then for every $\vec{x} \in A$ we can write $f(\vec{x}) \in f(A) = K$ then $\alpha \leq f(\vec{x}) \leq \beta$ then $f(\vec{a}) \leq f(\vec{x}) \leq f(\vec{b})$. \Box

Lecture 9, May. 26

Directional Derivatives

9.1 Remark. $A \subseteq \mathbb{R}^n, \vec{a} \in int(A), \vec{v} \in \mathbb{R}^n$ (a direction). Then $\exists c > 0$ such that $\vec{a} + t\vec{v} \in A, \forall t \in (-c, c)$.

9.2 Definition. $A \subseteq \mathbb{R}^n$, $f: A \to \mathbb{R}$, $\vec{a} \in int(A)$. Let \vec{v} be any vector in \mathbb{R}^n . Note that exists c > 0 such that the quotient

$$\frac{f(\vec{a}+t\vec{v})-f(\vec{a})}{t}$$

is defined for every $t \in (-c, c) \setminus \{0\}$. If the limit

$$L = \lim_{t \to 0} \frac{f(\vec{a} + t\vec{v}) - f(\vec{a})}{t} \in \mathbb{R}$$

exists, then we say that f has directional derivative in direction \vec{v} at the point \vec{a} . The notation for L is $(\partial_{\vec{v}} f)(\vec{a})$.

The limit L exists if and only if whenever $(t_k)_{k=1}^{\infty}$ in $(-c, c) \setminus \{0\}$, we have if $t_k \to 0$ then

$$\lim_{t \to 0} \frac{f(\vec{a} + t_k \vec{v}) - f(\vec{a})}{t} \to L.$$

9.3 Remark. If $\vec{v} = \vec{0}$ then $(\partial_{\vec{v}} f)(\vec{a})$ is sure to exists and is equal to 0.

9.4 Proposition. $A \subseteq \mathbb{R}^n$, $f: A \to \mathbb{R}$, $\vec{a} \in int(A)$. Let $\vec{v} \neq \vec{0} \in \mathbb{R}^n$. Suppose that $(\partial_{\vec{v}} f)(\vec{a})$ exists. Then for every $\alpha \in \mathbb{R}$, the directional derivative $(\partial_{\alpha\vec{v}} f)(\vec{a})$, and

$$(\partial_{\alpha\vec{v}}f)(\vec{a}) = \alpha(\partial_{\vec{v}}f)(\vec{a})$$

Proof. If $\alpha = 0$, then the equation becomes 0 = 0.

Assume $\alpha \neq 0$. Denote $\alpha \vec{v} = \vec{w}$. Then

$$\lim_{t \to 0} \frac{f(\vec{a} + t\vec{w}) - f(\vec{a})}{t}$$
$$= \lim_{t \to 0} \frac{f(\vec{a} + t\alpha\vec{v}) - f(\vec{a})}{t\alpha} \alpha$$
$$= \lim_{s \to 0} \frac{f(\vec{a} + s\vec{v}) - f(\vec{a})}{s} \alpha$$
$$= (\partial_{\vec{v}}f)(\vec{a}) \cdot \alpha$$

9.5 Definition. $A \subseteq \mathbb{R}^n$, $f: A \to \mathbb{R}$, $\vec{a} \in int(A)$. Suppose $(\partial_{\vec{v}} f)(\vec{a})$ exists for all $\vec{c} \in \mathbb{R}^n$. We say that "additivity in \vec{v} holds" to mean that

(Add)
$$(\partial_{\vec{v}_1+\vec{v}_2}f)(\vec{a}) = (\partial_{\vec{v}_1}f)(\vec{a}) + (\partial_{\vec{v}_2}f)(\vec{a}), \quad \forall \vec{v}_1, \vec{v}_2 \in \mathbb{R}^n$$

9.6 Remark. $A \subseteq \mathbb{R}^n$, $f \colon A \to \mathbb{R}$, $\vec{a} \in int(A)$. Assume $(\partial_{\vec{v}} f)(\vec{a})$ exists for all $\vec{v} \in \mathbb{R}^n$. Then (Add) may or may not hold.

9.7 Definition. $A \subseteq \mathbb{R}^n$, $f: A \to \mathbb{R}$, $\vec{a} \in int(A)$. Consider the special basis $\vec{e_1}, \vec{e_2}, \cdots, \vec{e_n}$ of \mathbb{R}^n where $e_i = \{0, \cdots, 0, 1, 0, \cdots, 0\}$.

When $(\partial_{\vec{e}_i} f)(\vec{a})$ exists, it is called the i-th partial derivative of f at \vec{a} and is denoted as $(\partial_i f)(\vec{a})$. Suppose all n partials $(\partial_i f)(\vec{a})$ exist for $1 \leq i \leq n$. Then

$$(\nabla f)(\vec{a}) = ((\partial_1 f)(\vec{a}), \cdots, (\partial_n f)(\vec{a})) \in \mathbb{R}^n$$

is called the gradient vector of f at \vec{a} .

9.8 Proposition. $A \subseteq \mathbb{R}^n$, $f: A \to \mathbb{R}$, $\vec{a} \in int(A)$. Suppose $(\partial_{\vec{v}} f)(\vec{a})$ exists for all $\vec{v} \in bR^n$, and that we have (Add) property. Then for every $\vec{v} \in \mathbb{R}^n$, we have

$$(\partial_{\vec{v}}f)(\vec{a}) = \langle \vec{v}, (\nabla f)(\vec{a}) \rangle$$

Proof. Fix $\vec{v} = (v^{(1)}, \dots, v^{(n)}) \in \mathbb{R}^n$, and write $\vec{v} = v^{(1)}\vec{e_1} + \dots + v^{(n)}\vec{e_n}$. Then

$$\begin{aligned} (\partial_{\vec{v}}f)(\vec{a}) &= (\partial_{v^{(1)}\vec{e}_1 + \dots + v^{(n)}\vec{e}_n}f)(\vec{a}) \\ &= (\partial_{v^{(1)}\vec{e}_1}f)(\vec{a}) + \dots + (\partial_{v^{(n)}\vec{e}_n}f)(\vec{a}) \\ &= v^{(1)}(\partial_1f)(\vec{a}) + \dots + v^{(1)}(\partial_nf)(\vec{a}) \\ &= \langle \vec{v}, \, (\nabla f)(\vec{a}) \rangle \end{aligned}$$

_	_

9.9 Remark. $(\partial_i f)(\vec{a})$ are computed in practical examples by using Calculus 1.

Rule of thumb: if $\vec{x} = (x^{(1)}, \dots, x^{(n)}) \in A$, treat all $x^{(j)}$ with $j \neq i$ as constants $x^{(j)} = a^{(j)}$ and do 1-dimensional derivative with respect to $x^{(i)}$ at $a^{(i)}$.

9.10 Example.

$$f((x, y, z)) = x \cdot \sin y \cdot z^2 - 3 \arctan z$$

The rule of thumb says

$$(\partial_1 f)(x, y, z) = \sin y \cdot z^2$$
$$(\partial_2 f)(x, y, z) = (xz^2) \cos y$$
$$(\partial_3 f)(x, y, z) = 2x \cdot \sin y \cdot z - \frac{3}{1+z^2}$$

Lecture 10, May. 31

Two basic applications of directional derivatives

10.1 Definition. $A \subseteq \mathbb{R}^n$, $f: A \to \mathbb{R}$. We say that $\vec{a} \in A$ is a point of local minimum for f to mean that $\exists r > 0$ such that $f(\vec{a}) \leq f(\vec{x})$ for all $\vec{x} \in A \cap B(\vec{a}, r)$.

We say a point $\vec{b} \in A$ is a local maximum to mean that $\exists r > 0$ such that $f(\vec{b}) \ge f(\vec{x})$ for all $\vec{x} \in A \cap B(\vec{a}, r)$.

A point of A which is either a point of local min or a point of local max for f is called a point of local extremum for f.

10.2 Proposition. $A \in \mathbb{R}^n$, $f: A \to \mathbb{R}$, $\vec{a} \in int(A)$, $\vec{v} \in \mathbb{R}^n$ and suppose that $(\partial_{\vec{v}} f)(\vec{a})$ exists. If \vec{a} is a point of local extremum for f, then $(\partial_{\vec{v}} f)(\vec{a}) = 0$.

Proof. Assume that \vec{a} is a local minimum. Let r > 0 be such that $B(\vec{a}, r) \subseteq A$ and $f(\vec{a}) \leq f(\vec{x})$ for all $\vec{x} \in B(\vec{a}, r)$. Let $c = \frac{r}{1+||\vec{x}||}$. Then have $\vec{a} + t\vec{v} \in B(\vec{a}, r)$, $\forall t \in (-c, c)$. Define $h: (-c, c) \to \mathbb{R}$

$$h(t) = f(\vec{a} + t\vec{v})$$

For every $t \in I$, we have $h(t) = f(\vec{a} + t\vec{v}) \ge f(\vec{a}) = h(0)$. Hence 0 is a point of minimum for h on I.

Then we have

$$\lim_{t \to 0} \frac{h(t) - h(0)}{t - 0} = \lim_{t \to 0} \frac{f(\vec{a} + t\vec{v}) - f(\vec{a})}{t} = (\partial_{\vec{v}} f)(\vec{a})$$

Since $(\partial_{\vec{v}}f)(\vec{a})$ exists, then the left hand side must exist as well. Then $h'(0) = (\partial_{\vec{v}}f)(\vec{a})$. Since h'(0) exists and 0 is a point of minimum, then h'(0) = 0. So $(\partial_{\vec{v}}f)(\vec{a}) = 0$, as required.

10.3 Corollary (Gradient-test for local extremum). $A \subseteq \mathbb{R}^n$, $f: A \to \mathbb{R}$, $\vec{a} \in int(A)$, and suppose that f has partial derivatives at \vec{a} , that is $(\partial_{\vec{v}}f)(\vec{a})$ exists for all $1 \leq i \leq n$. If \vec{a} is point of local extremum for f, then $(\nabla f)(\vec{a}) = \vec{0}$. When $(\nabla f)(\vec{a}) = \vec{0}$, one says that \vec{a} is stationary point for f.

Notation. For $\vec{x}, \vec{y} \in \mathbb{R}^n$ denote $\operatorname{Co}(\vec{x}, \vec{y}) = \{(1-t)\vec{x} + t\vec{y} \mid t \in [0,1]\}$. $\operatorname{Co}(\vec{x}, \vec{y})$ is called the line segment in \mathbb{R}^n with endpoints \vec{x} and \vec{y} .

10.4 Example. Let A be an open convex set in \mathbb{R}^n . $f: A \to \mathbb{R}$. $(\partial_{\vec{v}} f)(\vec{a})$ exists for all $\vec{\in}A, \vec{v} \in \mathbb{R}^n$. Then $(\partial_{\vec{v}} f)(\vec{a}) = 0$ for all $\vec{\in}A, \vec{v} \in \mathbb{R}^n$

Lecture 11, June. 5

C^1 -functions and their linear approximation

11.1 Definition. $A \subseteq \mathbb{R}^n$, $f: A \to \mathbb{R}$. We say that f is a C^1 -function to mean that it has the following properties

- f is continuous on A
- f has partial derivatives $(\partial_i f)(\vec{a})$ exists for all $\vec{a} \in A$ and $i \in \{1, \dots, n\}$
- The new functions $\partial_i f \colon A \to \mathbb{R}$ are continuous on A.

The collection of all C^1 -functions from A to \mathbb{R} is denoted as $C^1(A, \mathbb{R})$.

One also uses notation

$$C^{0}(A,\mathbb{R}) = \{f \colon A \to \mathbb{R} \mid f \text{ is continuous on } A\}$$

11.2 Remark.

$$\lim_{x \to a} \left| \begin{array}{c} f(x) - f(a) - f'(a)(x-a) \\ x - a \end{array} \right| = 0$$

11.3 Theorem. $A \subseteq \mathbb{R}^n$, $f \in C^1(A, \mathbb{R})$. Then for every $\vec{a} \in A$ we have

$$(\mathbf{L} - \mathbf{Approx}) \qquad \lim_{\vec{x} \to \vec{a}} \frac{\mid f(\vec{x}) - f(\vec{a}) - \langle \vec{x} - \vec{a}, (\nabla f)(\vec{a}) \rangle \mid}{\mid \mid \vec{x} - \vec{a} \mid \mid} = 0$$

11.4 Corollary. $A \subseteq \mathbb{R}^n$ open, $f \in C^1(A, \mathbb{R})$, $\vec{a} \in A$. Then for every $\vec{v} \in \mathbb{R}^n$, the directional derivative $(\partial_{\vec{v}} f)(\vec{a})$ exists, and have $(\partial_{\vec{v}} f)(\vec{a}) = \langle \vec{v}, (\nabla f)(\vec{a}) \rangle$.

Proof. In (L-Approx) we pick \vec{x} of the form $\vec{a} + t\vec{v}$. Then $\vec{x} \to \vec{a}$ be comes $t \to 0$.

Then multiply the limit by $||\vec{v}||$

$$\begin{split} \lim_{t \to 0} \frac{|f(\vec{a} + t\vec{v}) - f(\vec{a}) - \langle (\vec{a} + t\vec{v}) - \vec{a}, (\nabla f)(\vec{a}) \rangle|}{||\vec{a} + t\vec{v} - \vec{a}||} \cdot ||\vec{v}|| = 0 ||\vec{v}|| = 0 \\ \lim_{t \to 0} \left| \frac{f(\vec{a} + t\vec{v}) - f(\vec{a}) - t\langle \vec{v}, (\nabla f)(\vec{a}) \rangle}{t} \right| = 0 \\ \lim_{t \to 0} \left| \frac{f(\vec{a} + t\vec{v}) - f(\vec{a})}{a} - \langle \vec{v}, (\nabla f)(\vec{a}) \rangle \right| = 0 \\ \lim_{t \to 0} \frac{f(\vec{a} + t\vec{v}) - f(\vec{a})}{a} = \langle \vec{v}, (\nabla f)(\vec{a}) \rangle \end{split}$$

11.5 Corollary. $A \subseteq \mathbb{R}^n$ open, $f \in C^1(A, \mathbb{R})$, $\vec{a} \in A$. The directional derivatives at \vec{a} have (Add) property.

11.6 Lemma. $A \subseteq \mathbb{R}^n$ open, $f \in C^1(A, \mathbb{R})$, $\vec{a} \in \mathbb{R}$. Pick r > 0 such that $B(\vec{a}, r) \subseteq A$. Then for every $\vec{x} \in B(\vec{a}, r)$ we can find $\vec{b}_1, \cdots, \vec{b}_n \in B(\vec{a}, r)$ such that $f(\vec{x}) - f(\vec{a}) = \langle \vec{x} - \vec{a}, \vec{w} \rangle$ with $\vec{w} = ((\partial_1 f)(\vec{b}_1), \cdots, (\partial_n f)(\vec{b}_n))$.

Proof. Fix $\vec{x} \in B(\vec{a}, r)$. Consider vectors $\vec{x}_0, \vec{x}_1, \cdots, \vec{x}_n$, defined as follows:

$$\vec{x}_0 = \vec{a} = (a^{(1)}, \cdots, a^{(n)})$$
$$\vec{x}_1 = \vec{a} = (x^{(1)}, \cdots, a^{(n)})$$
$$\vec{x}_2 = \vec{a} = (x^{(1)}, x^{(2)}, \cdots, a^{(n)})$$
$$\cdots$$
$$\vec{x}_n = \vec{a} = (x^{(1)}, \cdots, x^{(n)}) = \vec{x}$$

Note that for every $1 \le i \le n$ we have $||\vec{x}_i - \vec{a}|| \le ||\vec{x} - \vec{a}|| < r$. Hence $\vec{x}_0, \vec{x}_1, \cdots, \vec{x}_n \in B(\vec{a}, r) \subseteq A$. Claim for every $1 \le i \le n$ there exists $\vec{b}_i \in Co(\vec{x}_{i-1}, \vec{x}_i)$ such that

$$f(\vec{x}_i) - f(\vec{x}_i) - f(\vec{x}_{i-1}) = (x^{(i)} - a^{(i)})(\partial_i f)(\vec{b}_i)$$

Verification of the claim.

$$\begin{aligned} \vec{x}_i - \vec{x}_{i-1} \\ = & (x^{(i)} - a^{(i)}) \cdot \vec{e}_i \\ = & \alpha \vec{e}_i \end{aligned}$$

Apply MVT in direction \vec{e}_i with endpoints \vec{x}_{i-1} and \vec{x}_i , then $\exists \vec{b}_i \in \text{Co}(\vec{x}_{i-1}, \vec{x}_i)$ such that $f(\vec{x}_i) - f(\vec{x}_{i-1}) = (x^{(i)} - a^{(i)})(\partial_i f)(\vec{b}_i)$. Done with claim.

Then

$$f(\vec{x}) - f(\vec{a}) = f(\vec{x}_m) - f(\vec{x}_0)$$

= $f(\vec{x}_m) - f(\vec{x}_{m-1}) + \dots + f(\vec{x}_1) - f(\vec{x}_0)$
= $\sum_{i=1}^m f(\vec{x}_i) - f(\vec{x}_{i-1})$
= $\sum_{i=1}^m (x^{(i)} - a^{(i)})(\partial_i f)(\vec{b}_i)$
= $\langle \vec{x} - \vec{a}, \vec{w} \rangle$

where $\vec{w} = ((\partial_1 f)(\vec{b}_1), \cdots, (\partial_n f)(\vec{b}_n)).$

Proof of Theorem 11.3. Given $\epsilon > 0$, we want to find $\delta > 0$ such that $B(\vec{a}, \delta) \subseteq A$ and such that

(Want)
$$\frac{\mid f(\vec{x}) - f(\vec{a}) - \langle \vec{x} - \vec{a}, (\nabla f)(\vec{a}) \rangle \mid}{\mid\mid \vec{x} - \vec{a} \mid\mid} < \epsilon$$

for all $\vec{x} \in B(\vec{a}, \delta) \setminus \{\vec{a}\}.$

Fix $r_0 > 0$ such that $B(\vec{a}, r_0) \subseteq A$. For every $1 \leq i \leq n$, we know that $\partial_i f$ is continuous at \vec{a} hence $\exists 0 \leq r_i \leq r_0$ such that for all $\vec{y} \in B(\vec{a}, r_i)$ we have

$$|(\partial_i f)(\vec{y}) - (\partial_i f)(\vec{a})| < \frac{\epsilon}{n}$$

Put $\delta = \min(r_1, \cdots, r_n)$. Claim δ is good for (Want).

Verification of claim. Pick $\vec{x} \in \mathcal{B}(\vec{a}, \delta) \setminus \{a\}$ for which we prove that

$$(\text{Want}') \qquad | f(\vec{x}) - f(\vec{a} | - \langle \vec{x} - \vec{a}, (\nabla f)(\vec{a}) \rangle < \epsilon || \vec{x} - \vec{a} ||.$$

Lemma 11.6 gives us points $\vec{b}_1, \cdots, \vec{b}_n \in \mathcal{B}(\vec{a}, \delta)$ such that

$$f(\vec{x} - \vec{a}) = \langle \vec{x} - \vec{a}, \, \vec{w} \, \rangle$$

where $\vec{w} = ((\partial_1 f)(\vec{b}_1), \cdots, (\partial_n f)(\vec{b}_n)).$

Then

$$\begin{split} \mid f(\vec{x}) - f(\vec{a} \mid - \langle \vec{x} - \vec{a} , (\nabla f)(\vec{a}) \rangle \\ &= \mid \langle \vec{x} - \vec{a} , \vec{w} \rangle - \langle \vec{x} - \vec{a} , (\nabla f)(\vec{a}) \rangle \mid \\ &= \mid \langle \vec{x} - \vec{a} , \vec{w} - (\nabla f)(\vec{a}) \rangle \mid \\ &\leq \mid |\vec{x} - \vec{a} \mid \mid \cdot \mid |\vec{w} - (\nabla f)(\vec{a}) \mid \mid \\ &\leq \mid |\vec{x} - \vec{a} \mid \mid \cdot \mid |\vec{w} - (\nabla f)(\vec{a}) \mid |_1 \\ &= \mid |\vec{x} - \vec{a} \mid \mid \cdot \sum_{i=1}^{m} \left| (\partial_i f)(\vec{b}_i) - (\partial_i f)(\vec{a}) \right| \\ &< \mid |\vec{x} - \vec{a} \mid \mid \cdot \sum_{i=1}^{m} \frac{\epsilon}{n} \\ &= \epsilon \cdot \mid |\vec{x} - \vec{a} \mid \mid \end{aligned}$$

Lecture 12, June. 9

Geometric interpretation of (L-Approx)

Theorem (Theorem 11.3). $A \subseteq \mathbb{R}^n$, $f \in C^1(A, \mathbb{R})$. Then for every $\vec{a} \in A$ we have

$$(\mathbf{L} - \mathbf{Approx}) \qquad \lim_{\vec{x} \to \vec{a}} \frac{|f(\vec{x}) - f(\vec{a}) - \langle \vec{x} - \vec{a}, (\nabla f)(\vec{a}) \rangle|}{||\vec{x} - \vec{a}||} = 0$$

In particular, for \vec{x} close to \vec{a} we have

$$f(\vec{x}) \approx f(\vec{a}) + \langle \vec{x} - \vec{a}, (\nabla f)(\vec{a}) \rangle$$

Review case n = 1

$$f(x) \approx f(a) + (x - a)f'(a)$$

Linear approximation says that for x close to a we can approximate Q by Q' where Q = (x, f(x)) and Q' = (x, f(a) + (x - a)f'(a)).

12.1 Definition. $A \subseteq \mathbb{R}^n$, $f: A \to \mathbb{R}$. The graph of f is the set of points

$$\Gamma = \{ (\vec{x}, t) \in \mathbb{R}^{n+1} \mid \vec{x} \in A, \ t = f(\vec{x}) \}$$

12.2 Definition. A hyperplane going through a point $\vec{p} \in \mathbb{R}^{n+1}$ is a set of the form

$$H = \{ \vec{p} + \sum_{i=1}^{n} \alpha_i \vec{y}_i \mid \alpha_1, \cdots, \alpha_n \in \mathbb{R} \}$$

where $\vec{y}_1, \cdots \vec{y}_n \in \mathbb{R}^{n+1}$ are linearly independent.

A vector $\vec{z} \in \mathbb{R}^{n+1}$, $\vec{z} \neq \vec{0}$, such that $\vec{z} \perp \vec{y_i}$, $\forall 1 \leq i \leq n$ is said to be a normal vector to the hyperplane H.

12.3 Remark. Consider hyperplane $H \subseteq \mathbb{R}^{n+1}$ as in Definition 12.2. If $\vec{z_1}, \vec{z_2}$ are normal vectors to H, then $\exists \alpha \in \mathbb{R} \setminus \{0\}$ such that $\vec{z_2} = \alpha \vec{z_1}$

12.4 Exercise. Given $A \subseteq \mathbb{R}^n$ open, $f \in C^1(A, \mathbb{R})$, $\vec{a} \in A$. Let Γ be the graph of f. What is the equation of the hyperplane tangent to Γ at the point $\vec{p} = (\vec{a}, f(\vec{a})) \in \Gamma$?

Solution. Pick $\delta > 0$ such that $B(\vec{a}, \delta) \subseteq A$. Pick $\vec{x} \in A$ of the form $\vec{x} = \vec{a} + \vec{v}$ with $||\vec{v}|| < \delta$. Look at the points $\vec{q} = (\vec{x}, f(\vec{x})) \in \Gamma$ and

$$\vec{q}' = (\vec{x}, f(\vec{a}) + \langle \vec{x} - \vec{a}, (\nabla f)(\vec{a}) \rangle)$$

(L-Approx) says \vec{q}' is the linear approximation of \vec{q} .

Our exercise becomes: how do we define H so that \vec{q}' is sure to be in H.

$$\begin{aligned} \vec{q}' - \vec{p} &= (\vec{x}, f(\vec{a}) + \langle \vec{x} - \vec{a}, (\nabla f)(\vec{a}) \rangle) - (\vec{a}, f(\vec{a})) \\ &= (\vec{x} - \vec{a}, \langle \vec{x} - \vec{a}, (\nabla f)(\vec{a}) \rangle) \\ &= (\vec{v}, \langle \vec{v}, (\nabla f)(\vec{a}) \rangle) \\ &= (v^{(1)}, \cdots, v^{(n), v^{(1)}(\partial_1 f)(\vec{a}) + \dots + v^{(n)}(\partial_n f)(\vec{a})}) \\ &= v^{(1)} \cdot (1, 0, \cdots, 0, v^{(1)}(\partial_1 f)(\vec{a})) + \dots + v^{(n)} \cdot (0, 0, \dots, 1, v^{(n)}(\partial_n f)(\vec{a})) \\ &= v^{(1)} \vec{y}_1 + \dots + v^{(n)} \vec{y}_n \end{aligned}$$

where $\vec{y}_i = (0, \cdots, 0, 1, 0, \cdots, 0, (\partial_i f)(\vec{a})).$

12.5 Definition. Given $A \subseteq \mathbb{R}^n$ open, $f \in C^1(A, \mathbb{R})$, $\vec{a} \in A$. Let Γ be the graph of f. Let $\vec{a} \in A$ and $\vec{p} = (\vec{a}, f(\vec{a})) \in \Gamma$. The hyperplane

$$H = \{ \vec{p} + \sum_{i=1}^{n} \alpha_i \vec{y_i} \mid \alpha_1, \cdots, \alpha_n \in \mathbb{R} \}$$

with $\vec{y}_i = (0, \cdots, 0, 1, 0, \cdots, 0, (\partial_i f)(\vec{a}))$ for $1 \le i \le n$ is called the tangent hyperplane to Γ at the point \vec{p} .

12.6 Remark. What is the normal vector to the tangent hyperplane of Definition 12.5?

We need $\vec{z} \in \mathbb{R}^{n+1}$ such that $\vec{z} \perp \vec{y_i}$ for all $1 \leq i \leq n$. Observe that

$$\vec{z} = (-(\partial_1 f)(\vec{a}), \cdots, -(\partial_n f)(\vec{a}), 1)$$

will do.

Lecture 13, June. 12

The Chain Rule

13.1 Remark. Let $f, g: \mathbb{R} \to \mathbb{R}$ differentiable. Let $u: \mathbb{R} \to \mathbb{R}$ be

$$u = f \circ g = f(g(t))$$

Then u is differentiable with $u'(t) = f'(g(t)) \cdot g'(t)$.

13.2 Theorem. $A \subseteq \mathbb{R}^n$ open, $f \in C^1(A, \mathbb{R})$. Let $I \subseteq \mathbb{R}$ be an open interval and let $\gamma: I \to \mathbb{R}^n$ be a differentiable path such that $\gamma(t) \in A$ for all $t \in I$. Define $u: I \to \mathbb{R}$ by $u(t) = f(\gamma(t))$ Then u is differentiable with

$$u'(t) = \langle (\nabla f)(\gamma(t)), \gamma'(t) \rangle$$

13.3 Example. Let $A = (0, \infty)^2$. $f: A \to \mathbb{R}$ be $f((s, t)) = s^t$. Then $f \in C^1(A, \mathbb{R})$.

Let $I = (0, \infty) \subseteq \mathbb{R}$ and let $\gamma \colon I \to \mathbb{R}^n$ be $\gamma(t) = (t, t)$. Then $\gamma'(t) = (1, 1)$

Then $u(t) = t^t$.

Theorem 13.2 says that

$$\begin{aligned} (t^t)' &= u'(t) \\ &= \langle (\nabla f)(\gamma(t)), \gamma'(t) \rangle \\ &= \langle (\nabla f)((t,t)), (1,1) \rangle \\ &= \langle (t \cdot t^{t-1}, t^t \ln t), (1,1) \rangle \\ &= t^t + t^t \ln t \end{aligned}$$

Proof of Theorem 13.2. Fix $t_0 \in I$ for which we will prove that the Chain Rule holds. So we need

$$\lim_{t \to t_0} \frac{u(t) - u(t_0)}{t - t_0} = \langle (\nabla f)(\gamma(t_0)), \gamma'(t_0) \rangle$$

We will do this limit by sequence. Let $(t_k)_{k=1}^{\infty}$ in I such that $t_k \to t_0$. Will show that

$$\lim_{k \to \infty} \frac{u(t_k) - u(t_0)}{t_k - t_0} = \langle (\nabla f)(\gamma(t_0)), \gamma'(t_0) \rangle$$

Denote $\gamma(t_0) = \vec{a} \in A$, $\gamma(t_k) = \vec{t}_k \in A$, $\forall k \in \mathbb{N}$. Then $(\vec{x}_k)_{k=1}^{\infty}$ is a sequence in A.

Claim 1. We have $\vec{x}_k \to \vec{a}$, and moreover that

$$\lim_{k \to \infty} \frac{1}{t_k - t_0} (\vec{x}_k - \vec{a}) = \gamma'(t_0)$$

Verif of Claim 1. For every $k \in \mathbb{N}$ we have

$$\vec{x}_k = \gamma(t_k) = (\gamma^{(1)}(t_k), \cdots, \gamma^{(n)}(t_k))$$

where $\gamma^{(1)}, \dots \gamma^{(n)} \colon I \to \mathbb{R}$ are differentiable, hence continuous.

When $k \to \infty$, get $\gamma^{(i)}(t_k) \to \gamma^{(i)}(t_0)$. So $\vec{x}_k \to (\gamma^{(1)}(t_0), \cdots, \gamma^{(n)}(t_0))$. Hence $\vec{x}_k \to \vec{a}$ as needed. Moreover,

$$\frac{1}{t_k - t_0}(\vec{x}_k - \vec{a}) = \left(\frac{\gamma^{(1)}(t_k) - \gamma^{(1)}(t_0)}{t_k - t_0}, \cdots, \frac{\gamma^{(n)}(t_k) - \gamma^{(n)}(t_0)}{t_k - t_0}\right) \to \left((\gamma^{(1)})'(t_0), \cdots, (\gamma^{(n)})'(t_0)\right) = \gamma'(t_0)$$

Claim 2. Pick r > 0 such that $B(\vec{a}, r) \subseteq A$, and pick $k_0 \in \mathbb{N}$ such that $\vec{x}_k \in B(\vec{a}, r)$ for all $k \ge k_0$. Then for every $k \ge k_0$ have $\operatorname{Co}(\vec{a}, \vec{x}_k) \subseteq A$, and we can find $\vec{b}_k \in \operatorname{Co}(\vec{a}, \vec{x}_k)$ such that

$$\frac{u(t_k) - u(t_0)}{t_k - t_0} = \langle (\nabla f)(\vec{b}_k) \,, \, \frac{1}{t_k - t_0}(\vec{x}_k - \vec{a}) \, \rangle$$

Verif of Claim 2. Application of MVT.

Claim 3. Let $(\vec{b}_k)_{k=0}^{\infty}$ be as in Claim 2. Then $\vec{v}_k \to \vec{a}$, and therefore $(\nabla f)(\vec{b}_k) \to (\nabla f)(\vec{a})$.

Verif of Claim 3. For every $k \ge k_0$ we have $\vec{b}_k \in \text{Co}(\vec{a}, \vec{x}_k)$, have $||\vec{b}_k - \vec{a}|| \le ||\vec{x}_k - \vec{a}||$. By squeeze theorem $\vec{b}_k \to \vec{a}$. Then for every $1 \le i \le n$ get $(\partial_i f)(\vec{b}_k) \to (\partial_i f)(\vec{a})$ because $\partial_i f$ is continuous on A. Then $(\nabla f)(\vec{b}_k) \to (\nabla f)(\vec{a})$.

Claim 4. We have

$$\lim_{k \to \infty} \frac{u(t_k) - u(t_0)}{t_k - t_0} = \langle (\nabla f)(\gamma(t_0)), \gamma'(t_0) \rangle$$

Verif of Claim 4. Have $(\nabla f)(\vec{b}_k) \to (\nabla f)(\vec{a})$

$$\lim_{k \to \infty} \frac{1}{t_k - t_0} (\vec{x}_k - \vec{a}) = \gamma'(t_0)$$

 So

$$\langle (\nabla f)(\vec{b}_k), \frac{1}{t_k - t_0}(\vec{x}_k - \vec{a}) \rangle \rightarrow \langle (\nabla f)(\vec{a}), \gamma'(t) \rangle$$

Since

$$\frac{u(t_k) - u(t_0)}{t_k - t_0} = \langle (\nabla f)(\vec{b}_k) \,, \, \frac{1}{t_k - t_0}(\vec{x}_k - \vec{a}) \, \rangle$$

then

$$\lim_{k \to \infty} \frac{u(t_k) - u(t_0)}{t_k - t_0} = \langle (\nabla f)(\gamma(t_0)), \gamma'(t_0) \rangle$$

Lecture 14, June. 19

Jacobian matrix, and the Chain Rule in the general case

14.1 Definition. $A \subseteq \mathbb{R}^n$ open, $f: A \to \mathbb{R}^m$. For every $\vec{x} \in A$, write $f(\vec{x}) = (f^{(1)}(x), \dots, f^{(m)}(x)) \in \mathbb{R}^m$, and look at the component functions $f^{(i)}: A \to \mathbb{R}$, $1 \leq i \leq m$. If $f^{(i)} \in C^1(A, \mathbb{R})$. then we say that $f \in C^1(A, \mathbb{R}^m)$.

14.2 Definition. $A \subseteq \mathbb{R}^n$, $f \in C^1(A, \mathbb{R}^m)$ with component functions $f^{(1)}(x), \dots, f^{(m)}(x) \in C^1(A, \mathbb{R})$. Then for every $\vec{a} \in A$, the matrix

$$(\mathbf{J}f)(\vec{a}) = \begin{bmatrix} (\partial_1 f^{(1)})(\vec{a}) & \cdots & (\partial_n f^{(1)})(\vec{a}) \\ \vdots & & \\ (\partial_1 f^{(m)})(\vec{a}) & \cdots & (\partial_n f^{(m)})(\vec{a}) \end{bmatrix} = \begin{bmatrix} (\nabla f^{(1)})(\vec{a}) \\ \vdots \\ (\nabla f^{(m)})(\vec{a}) \end{bmatrix}$$

is called the Jacobian matrix of f at \vec{a} .

14.3 Remark. When m = 1, $f \in C^1(A, \mathbb{R})$, so $(Jf)(\vec{a}) \in M_{1 \times m}(\mathbb{R})$. $(Jf)(\vec{a})$ is $(\nabla f)(\vec{a})$, treated as a row matrix.

When n = 1. Take A = I = open interval in \mathbb{R} . and take $f: I \to \mathbb{R}^m$ with $f^{(1)}(x), \cdots, f^{(m)}(x): I \to \mathbb{R}$. Have

$$f \in C^1(A, \mathbb{R}^m) \iff f^i \in C^1(I, \mathbb{R}), \ \forall 1 \le i \le m$$

$$(\mathbf{J}f)(a) = \left[egin{array}{c} (f^{(1)})'(a) \\ \vdots \\ (f^{(m)})'(a) \end{array}
ight]$$

Hence (Jf)(a) is the velocity vector of f at a, treated as a column matrix.

14.4 Theorem (Chain Rule). $A \subseteq \mathbb{R}^n$ open, $f \in C^1(A, \mathbb{R}^n)$. Suppose we also have $B \subseteq \mathbb{R}^p$ open, and $g \in C^1(B, \mathbb{R}^n)$, where $g(\vec{b}) \in A$ for all $\vec{b} \in B$.

Define the composed function $u = f \circ g$.

Then

1. $u \in C^1(B, \mathbb{R}^m)$

2. Fix $\vec{b} \in B$, denote $g(\vec{b}) = \vec{a} \in A$ and consider the Jacobian matrices:

$$(\mathbf{J}f)(\vec{a}) \in M_{m \times n}(\mathbb{R})$$
$$(\mathbf{J}g)(\vec{b}) \in M_{n \times p}(\mathbb{R})$$
$$(\mathbf{J}u)(\vec{b}) \in M_{m \times p}(\mathbb{R})$$

Then we have

 $(CR) \qquad (Ju)(\vec{b}) = (Jf)(\vec{a}) \cdot (Jg)(\vec{b})$

14.5 Remark. Can write (CR) as

$$(\mathbf{J}(f \circ g))(\vec{b}) = (\mathbf{J}f)(g(\vec{b})) \cdot (\mathbf{J}g)(\vec{b})$$

This is analogous to chain rule in calc 1

$$(f \circ g)'(b) = f'(g(b)) \cdot g'(b)$$

with appropriate dictionary

Derivatives \iff Jacobian matrices

multiplication of numbers
$$\iff$$
 multiplication of matrices

Consider the special case $1 \to n \to 1$. So $B \subseteq \mathbb{R}, g \colon B \to \mathbb{R}^n$ is a C^1 -path and have

$$(Jg)(b) = \begin{bmatrix} (g^{(1)})'(b) \\ \vdots \\ (g^{(m)})'(b) \end{bmatrix}$$

On the other hand, since m = 1, have $f \in C^1(A, \mathbb{R})$ and $(Jf)(\vec{a}) = [(\partial_1 f)(\vec{a}), \cdots, (\partial_n f)(\vec{a})]$. Put $u = f \circ g$. Denote g(b) = a.

Theorem 13.2 says

$$u'(b) = \langle (\nabla f)(\vec{a}), g'(b) \rangle$$

Theorem 14.4 says

$$(\mathbf{J}u)(b) = (\mathbf{J}f)(\vec{a}) \cdot (\mathbf{J}g)(b)$$

14.6 Example ("Polar Coordinates in \mathbb{R}^{2n}). $p = 2, n = 2, B = \{(r, \theta) \mid 0 < r < 1, 0 < \theta < 2\pi\} \subseteq \mathbb{R}^2, A = \{\vec{x} \in \mathbb{R}^2 \mid ||\vec{x}|| < 1\} \subseteq \mathbb{R}^2$. Let $g \colon B \to A, g((r, \theta)) = (r \cdot \cos \theta, r \cdot \sin \theta)$.

The Jacobian matrix for \boldsymbol{g}

$$(\mathrm{J}g)((r,\theta)) = \left[\begin{array}{cc} \cos\theta & -r \cdot \sin\theta\\ \sin\theta & r \cdot \cos\theta \end{array}\right]$$

Now take $f \in C^1(A, \mathbb{R})$, say $f((x, y)) = (x^2 + y^2)^{3/2}$. Consider the composed function $u = f \circ g$, $u \colon B \to \mathbb{R}$.

(CR) says that for $\vec{b} \in B$ we have

$$(\mathrm{J}u)(\vec{b}) = (\mathrm{J}f)(g(\vec{b})) \cdot (\mathrm{J}g)(\vec{b})$$

$$\begin{split} & [(\partial_1 u)(r,\theta), (\partial_2 u)(r,\theta)] \\ &= [(\partial_1 f)(r \cdot \cos \theta, r \cdot \sin \theta), (\partial_2 f)(r \cdot \cos \theta, r \cdot \sin \theta)] \cdot \begin{bmatrix} \cos \theta & -r \cdot \sin \theta \\ \sin \theta & r \cdot \cos \theta \end{bmatrix} \\ &= [3r^2 \cdot \cos \theta, 3r^2 \cdot \sin \theta] \cdot \begin{bmatrix} \cos \theta & -r \cdot \sin \theta \\ \sin \theta & r \cdot \cos \theta \end{bmatrix} \\ &= [3r^2, 0] \end{split}$$

14.7 *Remark.* $\vec{b} \in B$ is denoted as (r, θ) , so instead of $\partial_1 g$, $\partial_2 g$, people use $\frac{\partial g}{\partial r}$, $\frac{\partial g}{\partial \theta}$

Lecture 15, May. 23

C^2 -functions and the 2nd derivative test

15.1 Definition. $A \subseteq \mathbb{R}^n$ open, $f \in C^1(A, \mathbb{R})$. Consider the partial derivative $\partial_i f \colon A \to \mathbb{R}, 1 \leq i \leq n$. If $\partial_i f \in C^1(A, \mathbb{R}), \forall 1 \leq i \leq n$, we say $f \in C^2(A, \mathbb{R})$.

So in order to have $f \in C^2(A, \mathbb{R})$, we need the second partial derivatives $\partial_j(\partial_i f)$ to exist and be continuous on A $(1 \le i, j \le n)$

Convention: omit brackets, just write $\partial_j \partial_i f$. Also if i = j, then write $\partial_i^2 f$ instead of $\partial_i \partial_j f$.

15.2 Theorem. $A \subseteq \mathbb{R}^n$ open, $f \in C^2(A, \mathbb{R})$. Then for every $1 \le i, j \le n$ we have $\partial_j \partial_j f = \partial_j \partial_i f$.

15.3 Definition. $A \subseteq \mathbb{R}^n$ open, $f \in C^2(A, \mathbb{R})$, $\vec{a} \in A$. The $n \times n$ matrix

$$[\mathrm{H}f](\vec{a}) = \begin{bmatrix} (\partial_1^2 f)(\vec{a}) & (\partial_1 \partial_2 f)(\vec{a}) & \cdots & (\partial_1 \partial_n f)(\vec{a}) \\ \cdots & & \\ (\partial_n^2 f)(\vec{a}) & (\partial_n \partial_2 f)(\vec{a}) & \cdots & (\partial_n^2 f)(\vec{a}) \end{bmatrix}$$

is called the Hessian matrix of f at \vec{a} . Theorem 15.2 says that $\mathbf{H} = \mathbf{H}^T$

15.4 Remark. Let $\lambda_1, \dots, \lambda_n$ be the eigenvalues of H. Important points

- 1. Can diagonalize: $\mathbf{H} = VDV^T$ where D is a diagonal matrix and V is an orthogonal matrix.
- 2. If $\lambda_1, \dots, \lambda_n > 0$, then we say that H is positive definite. Equivalent description for this property is $\langle H \cdot \vec{v}, \vec{v} \rangle > 0$ for all $\vec{v} \in \mathbb{R}^n$, $\vec{v} \neq \vec{0}$. Likewise for negative definite.

15.5 Remark. $I \subseteq \mathbb{R}$ open interval, $f: I \to \mathbb{R}$ twice differentiable. Suppose that f'(a) = 0, $f''(a) \neq 0$, then f''(a) > 0 then a is local minimum for f and if f''(a) < 0 then a is local maximum for f.

15.6 Theorem. $A \subseteq \mathbb{R}^n$ open, $f \in C^2(A, \mathbb{R})$, $\vec{a} \in A$. Consider the gradient vector $(\nabla f)(\vec{a}) \in \mathbb{R}^n$ and the Hessian matrix $[\mathrm{H}f](\vec{a}) \in M_{n \times n}(\mathbb{R})$ with eigenvector $\lambda_1, \dots, \lambda_n \in \mathbb{R}$. Suppose that $(\nabla f)(\vec{a}) = \vec{0}$. (\vec{a} is stationary point for f), and $\lambda_1, \dots, \lambda_n \neq 0$. Then

- 1. $\lambda_1, \dots, \lambda_n > 0$ ([Hf](\vec{a}) is positive def) then \vec{a} is local min for f
- 2. $\lambda_1, \dots, \lambda_n < 0$ ([Hf](\vec{a}) is negative def) then \vec{a} is local max for f
- 3. If $\exists i, j$ such that $\lambda_i > 0$, $\lambda_j < 0$ then \vec{a} is not a local extremum for f.

15.7 Example. $n = 2, f \in C^2(\mathbb{R}^2, \mathbb{R}).$ $f((s, t)) = s^3 + t^3 - 3st, s, t \in \mathbb{R}.$

15.8 Remark. $A \subseteq \mathbb{R}^2$ open, $f \in C^2(A, \mathbb{R}), \vec{a} \in A$ with $(\nabla f)(\vec{a}) = \vec{0}$. Denote $[\mathrm{H}f](\vec{a}) = \begin{bmatrix} \alpha & \beta \\ \beta & \gamma \end{bmatrix}$ and λ_1, λ_2 be the eigenvector of $\begin{bmatrix} \alpha & \beta \\ \beta & \gamma \end{bmatrix}$.

Linear algebra facts

$$\lambda_1 + \lambda_2 = \alpha + \gamma$$
$$\lambda_1 \cdot \lambda_2 = \alpha \cdot \gamma - \beta_2$$

2nd derivative test gives this

- 1. if $\alpha\beta < \beta^2$, then \vec{a} is saddle point for f.
- 2. if $\alpha\beta > \beta^2$ and $\alpha > 0$, then \vec{a} is local min for f
- 3. if $\alpha\beta > \beta^2$ and $\alpha < 0$, then \vec{a} is local min for f

Lecture 16, May. 26

Basic integrability I: divisions and lower/upper sums

16.1 Definition. Let A be a non-empty set in \mathcal{M}_n . By a division of A we mean a set $\Delta = \{A_1, \dots, A_r\}$ where A_1, \dots, A_r are non-empty sets in \mathcal{M}_n , such that $A_1 \cup \dots \cup A_r = A$ and $A_i \cap A_j = \emptyset$ for $i \neq j$.

16.2 Definition. $A \neq \emptyset$ in \mathcal{M}_n . Let $\Delta = \{A_1, \dots, A_r\}$ and $\Gamma = \{B_1, \dots, B_q\}$ be two divisions of A. We say that Γ refines Δ written as $\Gamma \prec \Delta$ to mean that for every $1 \leq j \leq q$ there exists $1 \leq i \leq r$ such that $B_j \subseteq A_i$.

16.3 Remark. Condition from Definition 16.2 forces every A_i of Δ to be a disjoint union of B_j 's from Γ . That is, we can rewrite $\Delta = \{A_1, \dots, A_r\},\$

$$\Gamma = \{B_{1,1}, \cdots, B_{1,q_1}, \cdots B_{r,1}, \cdots, B_{r,q_r}\}$$

where $q = q_1 + \cdots + q_r$.

16.4 Proposition. $A \neq \emptyset$ in \mathcal{M}_n . Let Δ' and Δ'' be two divisions of A. Then exists division Γ of A such that $\Gamma \prec \Delta'$ and $\Gamma \prec \Delta''$.

Proof. Write
$$\Delta' = \{A'_1, \cdots, A'_r\}, \Delta'' = \{A''_1, \cdots, A''_s\}.$$

Put $\Gamma = \{A'_i \cap A''_j \mid 1 \le i \le r, 1 \le j \le s, A'_i \cup A''_j \ne \emptyset\}$

Now start looking at functions defined on sets $A \in \mathcal{M}_n$. Need to review: oscillation.

Let $f: A \to \mathbb{R}$. Suppose f is bounded. For $B \subseteq A$, we denote

$$\sup_{B} (f) = \sup\{f(\vec{x}) \mid \vec{x} \in B\}$$
$$\inf_{B} (f) = \inf\{f(\vec{x}) \mid \vec{x} \in B\}$$

$$\underset{B}{\text{osc}}(f) = \sup\{ | f(\vec{x}) - f(\vec{y}) | | \vec{x}, \vec{y} \in B \}$$

16.5 Definition. $f: A \to \mathbb{R}$ bounded function where $A \in \mathcal{M}_n$. Let $\Delta = \{A_1, \dots, A_r\}$ be a division of A. Then

$$U(f,\Delta) = \sum_{i=1}^{r} \operatorname{Vol}(A_i) \cdot \sup_{A_i}(f)$$

is called the upper (Darboux) sum for f and Δ and

$$L(f,\Delta) = \sum_{i=1}^{r} \operatorname{Vol}(A_i) \cdot \inf_{A_i}(f)$$

is called the lower (Darboux) sum for f and Δ .

16.6 Remark. A, f, Δ as in Definition 16.5, have

$$U(f,\Delta) - L(f,\Delta) = \sum_{i=1}^{r} \operatorname{Vol}(A_i) \cdot \operatorname{osc}_{A_i}(f)$$

In particular, it is obvious that $U(f, \Delta) \ge L(f, \Delta)$.

16.7 Lemma. $A \in \mathcal{M}_n$, $f : A \to \mathbb{R}$ bounded. Let Δ, Γ be divisions of A such that $\Gamma \prec \Delta$. Then we have $U(f, \Gamma) \leq U(F, \Delta)$ and $L(f, \Gamma) \geq L(f, \Delta)$.

Proof. Will prove the inequality for upper sums. Let $\Delta = \{A_1, \dots, A_r\}$. $\Gamma = \{B_{1,1}, \dots, B_{1,q_1}, \dots, B_{r,1}, \dots, B_{r,q_r}\}$ where $B_{i,1} \cup \dots \cup B_{i,q_i} = A_i, 1 \leq i$ leqr.

Then

$$U(f,\Gamma) = \sum_{i=1}^{r} \left(\sum_{j=1}^{q_i} \operatorname{Vol}(B_{i,j}) \cdot \sup_{b_{i,j}}(f) \right) \le \sum_{i=1}^{r} \left(\sum_{j=1}^{q_i} \operatorname{Vol}(B_{i,j}) \right) \cdot \sup_{A_i}(f) = U(f,\Delta).$$

16.8 Proposition. $A \in \mathcal{M}_n$, $f: A \to \mathbb{R}$. Let Δ', Δ'' be two divisions of A. Then $U(f, \Delta') \ge L(f, \Delta'')$.

Lecture 17, June. 30

Basic integrability II: the integral.

17.1 Definition. $A \in \mathcal{M}_n$. $f: A \to \mathbb{R}$ bounded. The set of real numbers

$$T = \{ U(f, \Delta) \mid \Delta \text{ division of } A \}$$

is bounded from below, so has an inf.

The number $\inf(T) \in \mathbb{R}$ is called the upper integral of f on Am denoted as $\overline{\int}_A f$ or $\overline{\int}_A f(\vec{x}) d\vec{x}$.

The set of real numbers

 $S = \{ L(f, \Delta) \mid \Delta \text{ division of } A \}$

is bounded from above, so has an sup.

The number $\sup(S) \in \mathbb{R}$ is called the lower integral of f on Am denoted as $\underline{\int}_A f$ or $\underline{\int}_A f(\vec{x}) d\vec{x}$.

One has $\underline{\int}_A f \leq \overline{\int}_A f$

17.2 Definition. If $\underline{\int}_A f = \overline{\int}_A f$, then we say that f is integrable on A, and define its integral to be $\underline{\int}_A f = \int_A f = \overline{\int}_A f$

17.3 Theorem. $A \in \mathcal{M}_n, f: A \to \mathbb{R}$ bounded. Then TFAE

- 1. f is integrable on A.
- 2. for every $\epsilon > 0$ there exists a division Δ of A such that $U(f, \Delta) L(f, \Delta) < \epsilon$.
- 3. There exists a sequence $(\Delta_k)_{k=1}^{\infty}$ of divisions of A such that $U(f, \Delta_k) L(f, \Delta_k) \to 0$.

Proof. Will prove $(1) \rightarrow (2)$. Others are left as exercises.

Denote $\int_A f = I$. So have $\underline{\int}_A f = I = \overline{\int}_A f$. Given $\epsilon > 0$, we need to find a division Δ of A such that $U(f, \Delta) - L(f, \Delta) < \epsilon$.

The idea is to find Δ' such that $I \leq U(f, \Delta') < I + \epsilon/2$. Find Δ'' such that $I - \epsilon/2 < L(f, \Delta'') \leq I$. Then let $\Delta \prec \Delta'$ and $\Delta \prec \Delta''$. Then we find such Δ .