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Lecture 1, May. 1

Will do multi-variable calculus, extend what you learned from MATH 147, 148 from R = R! to R™.

The course has 3 parts:

1. Sequence, limits, continuity (also: sets in R™ - open, closed, compact set)

2. Derivatives in R™ (requires grasp of linear algebra)

3. Integrals (Connection between derivatives and integrals)
Notation (Vectors).

= (2W, 2@ ... ™) ecRrr
Notation (Inner Product).
(@, 7)) =Wy 4 2@y@ 4o g gy g g e R®

Notation (Norm).

2]l = V(& &) =/ (a®)?

Some basic inequalities in R”

1.1 Proposition (Cauchy-Schwarz Inequality).

& 7)) [ <12 - 111l V7,5 € R

Proof. If 7 = 0, then we get 0 = 0.
So we will assume that 7 # 0, hence that || 7|| > 0.
Define h: R — R by
h(t)=(F—ty,Z¥—ty), teR
Observe that h(t) > 0, V¢ € R by positivity of the inner product.
But on the other hand, use bilinearity and get
h(t) = (&, &) = (&, tg) — (tg, &) + (=17, —t§)
=[|Z[]* —2t(z, §) + 2| 7|
=at’> —bt+c
where a = || 7], b =2(Z, ), c = || Z||*.

So h(t) is a quadratic function of ¢, as || 7||? is strictly positive, and h(t) > 0 for all t € R. It follows
that the discriminant A = b% — 4ac < 0.

Then
@, 7> < ZIPI7I°

Hence
(@, ) | <1 Z[l| 7]



1.2 Definition (Distance). Let & = (z(M), ... 2() 5= (y) ... y™)) € R". The distance between Z and
i is
d(&@,5) = | = 7§l = /D _(a®) —y()?

1.3 Proposition (Triangle Inequality).

Form 1
1Z+ gl <[zl +[lg]l, va,§ € R
Form 2
d(7,7) < d(F, ) + d(7.Z), VZ,§,7 € R"
Proof.

=212 +2(F, §) + 1717
<NZ|*+21 @, 7) |+ 1717
<[ Z|1*+ 2 Z1F]l + 17
=(1Z[1+ 171>

So we proved that
Z+g11* < (2]l +lyI)?
Take the square root on both side and we get form 1.

Form 2: Given Z, 4, 2 € R". Wrote

d(z,2) =|| 7 - 7|
= (@ =9+ @ -2l
<l Z-gll+1y-Zl|
=d(Z,7) + d(,2).
O
1.4 Remark. Both propositions extends to ”polygon inequalities”.
For every Z, ¢, 2, W € R", we have
d(Z,4) < d(Z,9) + d(y, 2) + d(Z, )
Proof. The proof is by induction on the number of points involved in the polygonal path. O
Notation. For & = (™), ... (") € R” denote
|21 = ‘ 2+ ‘+...+’ 2™




Aside. For every p € [1,00) denote

P)l/P.

11l = (| O [+ [ 2

Usual norm is || 7|2

1.5 Exercise. Prove that for every & € R",

12 Joo < I Z]] < [ Z]]r < nl|F]]o0



Lecture 2, May. 3

Sequences in R”

We use notation ()72, to mean that we have &1, Zs, - , &%, --- in R” (It is allowed to have &; = &,
for i # j).

2.1 Definition. Let (Z)72, be a sequence in R™. Let @ in R™. Consider the sequence of real numbers
(|| & —al)ge,. We say that (Zx)72,; converges to @ to mean that ||Z —@|| — 0 as k — oo.

2.2 Remark.
Ve > 0, ko € N such that Vk > ko, || & —dl| <e

2.3 Definition (Open Ball of center @ and radius r). For @ € R™ and r > 0 denote
B(d,r) ={Z eR™ | ||Z—d||l <r}.

2.4 Definition (Closed Ball of center @ and radius r). For @ € R™ and r > 0 denote

oo

(@r)={feR™|||Z-da| <r}.
2.5 Remark. Instead of || Zx — @ || < € we can also write d(Zy, @) < €, or T) € B(d, €).
2.6 Definition (Component Sequences). Let (Z%);2, be a sequence in R™. We write explicitly

L= ( 1 (2 . 7$§n))

z xy 2y,
Ty = (25,2, )
fk = (l‘](gl)7 $§€2), e 7x](cn))
We get n sequences in R™: (x,i”)iih (x,(f))zo:l, e (;Ui"))zozl They are called the component sequences of

(fkﬁo:r

(Note: If conversely someone gives you n sequences in R, then you can assemble them into sequence in
R™)

2.7 Proposition. Let (Zx)52, be a sequence in R™, @ € R”. Then we have

Tp — 4 < Vi x,(j) — aq®

Proof. (=) We have &, — @ in R™, we want to show that m,(f) —a® in R for all i € [1,n].

Fix i. Observe that for every k > 1,

)x,@—a(“ ‘:‘ (7, —a)® )ngk—d’ll

So for our fixed i € [1,n] we found that

Oglac,(f)—a(i)‘ngk—&'H—)O



Use squeeze to get ’ xg) —a® ‘ — 0. Hence x,(f) —a®,

(«=) First we have

’3;561)_&(1) ’Jr‘xg)_a(z) ‘+--~+‘m,<j>_a<”> 0

Hence
[|Zx —alls — 0
But
1@ —all <[ @ —alh, VkeN
So we get
0<|[Zx —all < || & —dlly =0
Use squeeze theorem to get || Z — @ || hence &), — d. O

2.8 Remark. Another description of convergence of sequence in R™ is provided by the Cauchy condition
(done in Math 147 for sequence in R). Can upgrade to sequence in R™ by taking components.



Lecture 3, May. 5

Subsequences and the Bolzano-Weierstrass Theorem

3.1 Definition (Subsequence). Let ()72, be a sequence in R™. A subsequece of (Z1)32, is a sequence of
the form (Zy(p))p2; for some 1 < k(1) < k(2) <--- < k(p) <---.

Notation. Instead of (T (,));2; we may write

(Zr)kepr

where P = {k(1),k(2),--- ,k(p),---}

How to avoid to talk about “sub-subsequences”: from the subsequence (Zy)gep can trim down to
(Z%)keq where Q C P is an infinite subset.

3.2 Remark. Let (7})72, be a sequence in R", @ € R". If ¥}, — @, then for every subsequence (T ,))p2 1, we
have T,y — d@ as well.

3.3 Remark (Review from Math 147). Recall that a sequence (¢;)72; in R is said to be bounded when 3r > 0
such that t; € [—-r, 7], VE.

3.4 Definition. A sequence (T, )52, in R™ is said to be bounded when 3r > 0 such that || Zx || < r, Vk € N.

Note. In dimension n = 1, this gives back the condition | 2} | < r, Vk € N, that is ¢; € [—r,r], Vk, which
defines bounded sequences in R.

3.5 Proposition. Let (& )72, be a sequence in R™, and consider its n component sequences

1 n
()3 ).
Then
(2 )7Ly is bounded o [ cachof (x,(:))?:l, el (m,(f))zo:l is
in R™ bounded in R ’
Proof. Exercise. O
3.6 Lemma. Let (&%), be a sequence R"™, and for every k € N write &y = (i, tx) where g =

(xg),~~ ,I,SL)) e R, t, = z,(ck-’_l) € R. Suppose that i, — beR" and ty, — t € R. Then &) — @ where

i=(bt).

Proof. Since 3, — l_;, then :C,(j) — b for all 1 <4 < n. Since t;, — t, then x,&"H) — b+t Then ;Ufj) — b®)
for all 1 <i < n+ 1. Hence &} — @ where @ = (b, t). O

3.7 Theorem (Bolzano-Weierstrass in R™). Let (2 )32, be a bounded sequence in R™. Then we can find
L< k(1) <k(2) <---<k(p) <--- such that the subsequence (Ty(p))ss; is convergent (to some limit in R™ ).
Proof. By induction on n (dimension of the space).

Base case n = 1 was done in Math 147. Here we focus on the induction step n = (n + 1).

Assume B-W holds in R™. Fix a bounded sequence (%), )72, in R""!. Write every @), = (¥, tx) where
Up = (xg), . ,x,&n)) € R™ and t, = x,(:ﬂ) eR.



Claim that (7 )32, is a bounded sequence in R™ and (¢;)72; is a bounded sequence in R. Since (& )52,
is bounded, then 3r > 0 such that || Zj || < r, Vk € N. But for every k € N we have r? > || Z ||? = || g ||*+13.
Then || g% || <7 and |t | < r. It follows that (g )52, is a bounded sequence in R and (¢;)72 ; is a bounded
sequence in R.

Since B-W holds in R™, we can find an infinite set M = {k(1), k(2),--- } € N such that the subsequence
(U(m))me=1 of (¥ )32, is convergent to some limit b € R".

Consider the sequence of real numbers (tx)renr. It is a bounded sequence in R. Apply to it the B-W
theorem in R. and then we can find an infinite set P C M such that the subsequence (tx)rep is convergent
to a limit t € R.

Since limy_y00, kenm Y — b and P C M, we have limy_oo kep — Ui = b as well. because (¥)rep is a
ssubsequence of (¥ )ken-

Now we have limy_yo0, kep Y = b and limg o0, kep tx = k. Then by the previous lemma,

li J = (b, ).
k%;{f}fep(ymtk) (b,t)

Then the subsequence (Zy)rep of (4 )52, is convergent to @ = (b, t) € R, O



Lecture 4, May. 10

Continuity (of a function at a point) and Respect (for sequences)

4.1 Definition. Let m,n € N ACR", f: A - R™, d € A. We say that f is continuous at @ to mean that
for all € > 0 there exists a d > 0 such that || f(Z) — f(d) || < e for all T € A with || T —a]|| < §.

Geometric interpretation: given € > 0, we need to find § > 0 such that
f(ANB(@: §)) CB(f(@): €).

4.2 Definition. Let m,n e N, A CR"”, f: A —» R™, d € A. We say that f respects sequences in A which
converges to @ to mean that whenever (& )72, in A is such that & — @, it follows that f(Z) — f(a@) in
R™.

4.3 Proposition. Let m,n € N, ACR", f: A—> R™, a € A. Then f respects sequence that converges to
a if and only if f is continuous at d.

Proof. (=) Assume that f respects sequence that converges to @. Fix € > 0.

Assume, for a contradiction, that f is not continuous at @. That is for all 6 > 0, there exists ¥ € A and
17— || < 6 with that || £((@) — £(@)]| > e.

Let {0, > 0} be a sequence that converge to 0. For each 4,, there exists Z,, € A such that || %, —d|| < ¢
with that || f((Z,) — f(@) || > €. Since limg_, || Zx — @ || = 0, we have Ty, converges to d@. Since f respects
sequence that converges to @, {f(Z,)} should also converges. However, || f(Z,) — f(d)|| > € for all n. Tt
follows by contradiction that f is continuous at a.

(«=) Assignment (direct application on the definition). O

4.4 Definition. Let A C R, f: A — R™. For every ¥ € A write explicitly f(Z) = (f"(&),---, f™)(z)) €
R™. Then fM) ... f(™: A - R are called the component functions of f.

4.5 Proposition. Let A CR", f: A — R™, and f,---, f(™: A — R as above. Let @ be a point in A.

Then
f has continuity each of fO) ... ™) has
- 54 . o .
at a continuily at a

Claim.

f respects sequences N each of f) ... (M) respects

at @ sequences at @ '

Proof. Take (7)), in A such that F), — @. For every k € N, write f()) = (fV(%x), -, f™(Zk)). Now

apply Proposition 2.5, which says

(@) = f(@) & fO @) — ()
Then the claim follows. O
Claim.

( f has continuity ) N ( each of f), ... f(m) hag )

at a continuity at @



Proof.

f has continuity o f respects continuity
at a at a

( each of f( ... f0m) regpects ) o ( each of f(1) ... f0m) hag )

sequences at @ continuity at @
O

4.6 Definition. Let A CR™. f: A — R™. We say that f is continuous on A to mean that f is continuous
at every a € A.

4.7 Remark. We have two explicit description for “f continuous on A”.

1. Given @ € A and € > 0, we can find § > 0 such that
I1f(@) - fl@)]] <e
for all € A with ||Z —d|| < é.

2. Whenever (£, )72, in A has &) — @, it follows that f(Zy) — f(@) in R™. (f respects all the convergent
sequnce in A).

4.8 Remark (Stronger form of continuity). Let A CR", f: A — R™. We say that f is uniformly continuous
on A to mean that given € > 0, we can find § > 0 such that

1f(Z1) = f(@2) ]| <e

for all fl,fQ € A with ||f1 — X9 || < 0.
4.9 Remark. Pick a ¢ > 0. We say that f is ¢-Lipschitz on A to mean that

| f(Z1) = f(@2) || S c-|[T1 — Z2], VT, T2 € A

4.10 Remark. We say that f is Lipschitz on A to mean that 3¢ > 0 such that f is c-Lipschitz.
4.11 Remark. Easy to check

f lipschitz on A = f uniformly continuous on A = f continuous on A



Lecture 5, May. 15

Interior, closure, boundary for subsets of bR"

5.1 Definition. Let A be a subset of R™. A point @ € A is said to be an interior point of A when there
exists r > 0 such that B(d,r) C A. The set of all interior points of A is called the interior of A denoted by
int(A).

A point b € R™ is said to be adherent to A when it has the property that B(E, rYNA#D, VYr>0. The
set of all points in R™ that are adherent to A is called the closure of A denoted as cl(A).

5.2 Remark. For every A C R™ we have int(A) C A C cl(A).
5.3 Definition. The set-difference cl(A4) \ int(A) is caled the boundary of A, denoted as bd(A).

5.4 Example. Say m = 2. Let
A={(s,t) | s,t R, t>0}tU{(s,0)| s €R, s>0}.
Calculate int(A), cl(A), bd(A).

Solution.
int(A) = {(s,t) | s,t €R, t> 0}

cl(A) = {(s,t) | s,t € R, t >0}
bd(A) = {(s,0) | s € R}
5.5 Proposition (Duality interior-closure). For every A C R™ we have that
int(R™\ A) =R"\ cl(4)
cl(R"\ A) =R"\ int(A)
Proof. We first prove that int(R™\ A) C R™\ cl(4). Take b € int(R™ \ A). Then 3r > 0 such that

B(b,r) C R™\ A. For this r > 0, observe that B(b,r) N A = . Then b ¢ cl(A) which means that
beR™\ cl(A).

Take b € R® \ A. Then b ¢ cl(4). Then 3r > 0 such that B(b,r) N A = (). For this r, we have
B(b,r) CR™\ A. Then b € int(R™ \ A).

Therefore int(R™ \ A) = R™ \ cl(4). O
5.6 Corollary. For every A C R™, we have bd(4) = cl(A) Ncl(R™\ A).
For every A CR™, we have bd(A4) = bd(R™\ A).

Proof.

bd(A) = cl(A) \ int(A)
=cl(A) N (R™\ int(A))
= cl(4) Ncl(R™\ A)

10



bd(R™ \ A)

(Something missing).

(R™\ A) N cl(R™\ (R™\ A))

cl(R™\ A) Ncl(A)
cl(A)Ncl(R™\ A)

11

bd(A)



Lecture 6, May. 17

Open and closed subsets of R”

6.1 Definition. A C R” is said to be open when it satisfied A = int(A4). That is A is open if and only if
every d € A is an interior point of A.

A C R™ is said to be closed when it satisfied A = cl(A). That is A is closed if and only of A has no
adherent points b € R™ \ A.

Most subsets of R™ are neither open or closed.

In particular, if you have to prove A is closed, it will not suffices to prove A is not open.
6.2 Proposition. For A C R", we have A is closed if and only if R™ \ A is open.
Proof. (=) A is closed, then cl(A) = A. But then int(R” \ A) = R\ cl(4) = R\ A. So we get
int(R™\ A) =R"™\ A, hence R™\ A is open.

(<) R™\ A is open. then int(R™\ A) = R™\ A, then R™\ cI(A) =R"™\ A. Then cl(4) = A hence A is
closed. O

6.3 Definition. We say that a set A C R™ has the “no-escape” property for sequences to mean that
whenever (Z )72, is a sequence in A that converge to b € R”, then it follows that b € A.

6.4 Proposition. For A CR"™ we have A is closed if and only if A has no-escape property.

Proof. Exercise. O

12



Lecture 7, May. 19

A new look at interior and closure

7.1 Lemma. Let A CR"™. Assume that D is an open set. If D C A, then D C int(A).

Proof. Callint(A) =T. If ¥ € D, O
7.2 Lemma. A CR". int(A) is an open set.
7.3 Proposition. For every A CR™. The set int(A) is the largest open set contained in A.

7.4 Proposition. For every A CR"™, the set cl(A) is the smallest closed set which contains A.
Proof. Let M =R"™\ A. We apply Proposition 7.3 to M. It says that

1. int(M) C M and int(M) is open.
2. If D C R™ is an open set such that D C M, then it follows that D C int(M).
cl(A) O A known from lecture 5.

cl(A) = cl(R™\ M) =R"™\ int(M). Since int(M) is closed, then cl(A) is closed.

let F¥ C R™ be a closed set such that F* O A. Put D = R®\ F. Then D is open and D C M. Then
R™\ D D R™\ int(M) = cl(A). O

13



Lecture 8, May. 23

Compact subsets of R”

8.1 Definition. A C R” is said to be bounded when 3r > 0 such that || Z|| <r, VZ € A.
8.2 Definition. A C R"™ is said to be compact when it is closed and bounded.

Note. There are several other equivalent description of compactness, and some of them extends to more
general frameworks

8.3 Definition. A C R" is said to be sequentially compact when the following happens: For every sequence
(Zk )32, € A one can find a convergent subsequence (' (p))p2; such that the limit @ = limy,, o Ty (p) still is
in A.

8.4 Theorem. For A C R" have that

A is compact < A has sequential compactness

Proof. (=) Suppose A is closed and bounded. Let (& )72, be a sequence in A. Then (& )72, is bounded.
Then we can extract a convergent subsequence (T ()2 (Bolzano-Weierstrass). Denote limy, ;o Ty(p) = d.
Since A is closed and (T (,));2; is a sequence in A, it follows that @ € A (by the no-escape property of A).

(<) Suppose that A has sequential compactness.

Assume by contradiction that A is not closed, hence a does not have the no-esape property for sequences.
So there exists sequence (& )32, € A with limy_,o @ = beR" \ A. Property sequetial compactness says

that we can find (Zy(,))p2; that converges to a limit @ € A. But also have that 7} — b = Tpp) — b.
(Contradiction.)

8.5 Proposition. Let A C R" be compact and let f: A — R™ be a continuous function. Consider the
image-set M = f(A) ={g e R" | 3%, f(Z) =y}. Then M is a compact subset of R™.
Proof. We will verify that M is sequentially compact. So fix a sequence (7 )32, in M. We need to find a
convergent subsequence (¥ ()5S with limit still in M.

For every k € N, we have g, € M = f(A). Hence 3%, € A such that f(Zx) = F.

Since A is compact, hence it is sequentially compact. So for the sequence (% )72, in A we can find
1 < k(1) <k(2) <--- such that Zy,) — dc A

Since f is continuous on A, hence it respects convergence of sequences in A. It follows that f(Z ) —
f(@). But f(a?k(p)) = gk(p). Thus gk(p) — f(d) e M. O

8.6 Definition. ACR"™ f: A — R.

1. @ € A is said to be a point of global minimum for f on A when f(@) < f(Z) for all Z € A
2. @ € A is said to be a point of global maximum for f on A when f(Z) < f(a) forall ¥ € A

8.7 Remark. Points of global min/max may or may not exist. When they exist, they may or may not be
unique.

14



8.8 Theorem (E.V.T.). A C R"™ compact, f: A — R continuous. Then f has at least one point of global
manimun and at least one point of global mazimum on A.

8.9 Lemma. Let K be a non-empty compact subset of R. Then Ja, 8 € K such that a <t < g, Vt € K.

Proof. Since K is compact, then K is closed and bounded. Then exists r > 0 such that K C [—r,r]. Then
K has lower bounds and upper bounds. Then K has a least upper bound 8 = sup(K) and a greatest lower
bound a = inf(K). For every k € N, we have (8 —1/k, 5]N K # (). Hence we can construct a sequence in K
that converges to 3. Since K is closed, it has the no-escape property. Hence 5 € K. O

Proof of E.V.T.. We want to prove 3@,b € A such that f(@) < f(&) < f(b), VZ € A.

Consider image-set K = f(A) =C R. Then K is a non-empty compact subset of R. Consider o =
min(K), 8 = max(K). we have a, 8 € K = f(A). Hence 3d,b € A such that f(d) = a and f(b) = 5. But

then for every Z € A we can write f(Z) € f(A) = K then a < f(&) < 8 then f(a@) < f(Z) < f(b). O

15



Lecture 9, May. 26

Directional Derivatives

9.1 Remark. ACR", @ € int(A), ¥ € R" (a direction). Then 3¢ > 0 such that @+ t0 € A, Vt € (—c,c).

9.2 Definition. A CR", f: A —» R, @ € int(A). Let ¥ be any vector in R™. Note that exists ¢ > 0 such
that the quotient
fa+to) - f(a)

t
is defined for every t € (—c,¢) \ {0}. If the limit

L J@+ 1) — 1@
t—0 t

eR

exists, then we say that f has directional derivative in direction ¥ at the point @. The notation for L is

(05.)(@).

The limit L exists if and only if whenever (¢)72, in (—c¢,c) \ {0}, we have if ¢t;, — 0 then

o 1@+ 07) — £(@)

t—0 t

— L.

9.3 Remark. If ¥ = 0 then (95f)(@) is sure to exists and is equal to 0.

9.4 Proposition. ACR", f: A— R, @ int(A). Let T # 0 € R™. Suppose that (O5f)(a@) exists. Then for
every a € R, the directional derivative (Onzf)(a@), and

(Oawf)(@) = a(95f)(@)

Proof. If a =0, then the equation becomes 0 = 0.

Assume « # 0. Denote at = &. Then

lim
t—0 t

— lim f(@+ tav) — f(a)a
t—0 ta

o J@ )~ [@)
s—0 S

O

9.5 Definition. A C R", f: A — R, @ € int(A). Suppose (9zf)(a) exists for all ¢ € R™. We say that
“additivity in ¥ holds” to mean that

(Add) (8171+172 f)(a) = (81?1 f) (6) + (8172 f)(6)7 Vﬁly 172 S R"

9.6 Remark. ACR", f: A —> R, d € int(A4). Assume (95f)(a) exists for all ¥ € R™ . Then (Add) may or
may not hold.

16



9.7 Definition. A C R", f: A — R, d@ € int(A). Consider the special basis €1, €, ,€, of R™ where
€; :{Oa a071707"' 70}

When (0, f)(@) exists, it is called the i-th partial derivative of f at @ and is denoted as (9; f)(@).

Suppose all n partials (9; f)(d) exist for 1 < ¢ < n. Then

(V@) = (61 f)(@),---, (9nf)(@) e R
is called the gradient vector of f at d.

9.8 Proposition. A CR"”, f: A - R, @ € int(A4). Suppose (0zf)(a@) exists for all ¥ € bR™, and that we
have (Add) property. Then for every ¢ € R"™, we have

(0s)(@) = (@, (Vf)(@))
Proof. Fix 7 = (v(V,... o) € R and write & = v(V&, + --- + v(™&,. Then
(05)(@) = Oy, - vtme, ) (@)
= (Opa (@) + -+ + (Opmen £)(@)

— oD@ ) (@) + -+ vV (0, f)(@)
= (v, (V[)(@))

9.9 Remark. (0;f)(a@) are computed in practical examples by using Calculus 1.

Rule of thumb: if # = (z(M,...  2(™) € A, treat all 1) with j # i as constants (/) = a(9) and do
1-dimensional derivative with respect to z(* at a(?.

9.10 Example.
f((z,y,2)) =z -siny - 22 — 3arctan z

The rule of thumb says
(D1f)(x,y,2) = siny - 2°
(1) (2, y,2) = (22°) cosy

(0sf) (2, 2) = 22 -siny - z — —

14 22

17



Lecture 10, May. 31

Two basic applications of directional derivatives

10.1 Definition. A CR", f: A — R. We say that @ € A is a point of local minimum for f to mean that
Ir > 0 such that f(@) < f(Z) for all £ € AN B(d,r).

We say a point b € A is a local maximum to mean that 3 > 0 such that f(b) > f(Z) for all # € ANB(a, r).

A point of A which is either a point of local min or a point of local max for f is called a point of local
extremum for f.

10.2 Proposition. A e R", f: A - R, d € int(A4), ¥ € R™ and suppose that (0zf)(d) exists. If @ is a point
of local extremum for f, then (0zf)(a@) = 0.

Proof. Assume that @ is a local minimum. Let r > 0 be such that B(a,r)

C A and f(d) < f(Z) for all
Z € B(d,r). Let c = 771777 Then have @ + {7 € B(a,r), Vt € (—c,c). Define h: (—c,

c) =R

h(t) = f(@ + t7)

For every t € I, we have h(t) = f(d + t¥) > f(@) = h(0). Hence 0 is a point of minimum for & on I.
Then we have

R hO) S ) - @)
t—0 t—0 t—0 t

= (9zf)(a)
Since (0zf)(@) exists, then the left hand side must exist as well. Then h/'(0) = (9zf)(@). Since h’(0)
exists and 0 is a point of minimum, then A’'(0) = 0. So (9zf)(@) = 0, as required. O

10.3 Corollary (Gradient-test for local extremum). A CR", f: A - R, @ € int(A), and suppose that f
has partial derivatives at @, that is (0zf)(a@) exists for all 1 < i < mn. If @ is point of local extremum for f,
then (Vf)(@) =0. When (Vf)(@) =0, one says that @ is stationary point for f.

Notation. For Z,§ € R"™ denote Co(Z,y) = {(1 —t)Z+ty | t € [0,1]}. Co(Z,7) is called the line segment in
R™ with endpoints & and .

10.4 Example. Let A be an open convex set in R™. f: A — R. (95f)(a) exists for all €A, 7 € R™. Then
(0zf)(@) =0 for all EA, v € R
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Lecture 11, June. 5

C'-functions and their linear approximation

11.1 Definition. A C R", f: A — R. We say that f is a C''-function to mean that it has the following
properties

e f is continuous on A

e [ has partial derivatives (9;f)(@) exists for all @ € A and i € {1,--- ,n}

e The new functions 9;f: A — R are continuous on A.

The collection of all C'-functions from A to R is denoted as C!(A,R).

One also uses notation

C%A,R) ={f: A— R| f is continuous on A}

11.2 Remark.
i | 7@ = (@) = @@= a)

T—a xr—a

=0
11.3 Theorem. A CR", f € C'(A,R). Then for every @ € A we have

L Appro)  ti LGV I@ — F =, (V@) |

- U,
|z —all

=0

11.4 Corollary. A C R" open, f € C1(A,
(0s£)(@) exists, and have (Ozf)(@) = (U, (Vf

), @ € A. Then for every U € R"™, the directional derivative

R),
£@).

Proof. In (L-Approx) we pick & of the form @ + t¢. Then Z — @ be comes t — 0.
Then multiply the limit by || 7|

po LS @+19) = (@) — (@ +t5) —a@, (V@) |

finy S =0l =0
i | £@+19) — f@) — (@, (V/)(@)) ’_0
t—0 t
tiy | LD D o wpya | -0
tim HEEIVZTD _ (5 (v p)(a))

O
11.5 Corollary. A C R" open, f € C*(A,R), @ € A. The directional derivatives at @ have (Add) property.

11.6 Lemma. A C R" open, f € C*(A,R), @ € R. Pick r > 0 such that B(@,r) C A. Then for every ¥ €
B(d,r) we can find by, - - - b, € B(@,r) such that f(Z)—f(ad) = (¥—a, W) withw = ((O1.f)(b1), -+, (Onf)(bn)).
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Proof. Fix & € B(d,r). Consider vectors Ty, 1, - , T, defined as follows:

fo=a=(aV, - a™)
f=d=(zW,... a")
Ty=a= (M, 2 ... o™)
Fomd= (D, 2™y = 7
Note that for every 1 <i <n we have ||Z; — d|| < ||Z — d|| < r. Hence &y, %1, -+, %, € B(d,r) C A.

Claim for every 1 < i < n there exists b; € Co(Z;_1, &;) such that
F@) = f(@) = f(@1) = @ = a®)(@:)(5:)

Verification of the claim.

Ty — Tia
=z —a®). g

:Oéé'i

Apply MVT in direction €; with endpoints #;_; and Z;, then 35} € Co(&;—1,7;) such that f(&;) —
f(@i_1) = (D — a)(0; f)( ;). Done with claim.

Then
f(@) = f(@) = f(Zn) — f(Zo)
= f(@m) = [(@m-1) + -+ [(@1) = [(Zo)
- f}f@-) - f(di)
= Zm:(év(“ a®)(0,f)(b;)
- z;— i, o)
where @ = (91 f)(B1), -+, (O f)(Bn)). -

Proof of Theorem 11.3. Given € > 0, we want to find 6 > 0 such that B(@,0) C A and such that

(W) L) 1@ —(F =G, (VN(@) |

|7 —all

<e€

for all Z € B(a, d) \ {a}.

Fix ro > 0 such that B(d,r9) € A. For every 1 < i < n, we know that 9;f is continuous at @ hence
30 < r; < rp such that for all ¥ € B(d, r;) we have

@0 — )@ | < =
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Put § = min(ry, -+ ,ry,). Claim ¢ is good for (Want).

Verification of claim. Pick Z € B(@,d) \ {a} for which we prove that

(Want) | f(Z) — f(@| - (Z—a, (V)(@)) <ellZ—all

Lemma 11.6 gives us points by, - - - , b, € B(@,6) such that
f(@—a)={7-a,d)

where @ = ((alf)(gl), R (anf)(gn))
Then

|
= (@—d, @)~ (=, (V@) |
= (@—d, @~ (V)(@) |
<= all-||@ - (VH@ ||
<@ —all-||@ - (VH@ s
=llE=all- > | @6 - @:0)@)
<lle-all-y -

i=1
||z -

21



Lecture 12, June. 9

Geometric interpretation of (L-Approx)
Theorem (Theorem 11.3). A CR", f € C1(A,R). Then for every @ € A we have

(L — Approx) lim | f(@) — f(@) — (@ —a, (V[)(@@)) |
it |z —al|

=0

In particular, for & close to @ we have

Review case n =1

Linear approximation says that for z close to a we can approximate @ by Q' where Q = (z, f(z)) and

Q' = (z, f(a) + (x — a)f'(a)).
12.1 Definition. A CR", f: A — R. The graph of f is the set of points

I ={(&t)cR" |FcA t=[f())}
12.2 Definition. A hyperplane going through a point 5 € R"*! is a set of the form

H:{ﬁJFZOéigi |on,- -+ an € R}

i=1

where i, - - - 4, € R"™! are linearly independent.

A vector 7 € R*HL, 74 0, such that Z L ;, V1 <i < n is said to be a normal vector to the hyperplane
H.

12.3 Remark. Consider hyperplane H C R"*! as in Definition 12.2. If 7}, 7, are normal vectors to H, then
Jo € R\ {0} such that Z, = aZ;

12.4 Exercise. Given A C R" open, f € C'(A4,R), @ € A. Let " be the graph of f. What is the equation
of the hyperplane tangent to I' at the point p = (@, f(a@)) € I'?

Solution. Pick § > 0 such that B(d@,d) C A. Pick & € A of the form ¥ = @ + ¢ with || || < §. Look at the
points ¢ = (&, f(Z)) € I and

(L-Approx) says ¢ is the linear approximation of .

Our exercise becomes: how do we define H so that ¢’ is sure to be in H.

(@, (V)
= (M, .. ol
=M. (1,0, 70’U(1)(31f)(5)> 4o (0,0, - ,1,v(”)(8nf)((i))
— v(l)g’l 4+ v(")g’n

o
n),v

D(01f)(@)+-4o™ (an)(ﬁ))
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Where?ji:<07'” ) 071a0 )" ’07(871-]8)(6))

positions

12.5 Definition. Given A C R" open, f € C*(A4,R), @ € A. Let I' be the graph of f. Let @ € A and
p=(d, f(d@)) € T'. The hyperplane

n
H:{ﬁ+Zaig’i|a1,--~ ,an, € R}
i=1

with 7; = (0,---, 0,1,0 ,---,0,(9;f)(@)) for 1 <4 < n is called the tangent hyperplane to I" at the point p.

positioni
12.6 Remark. What is the normal vector to the tangent hyperplane of Definition 12.57

We need Z € R™*! such that Z L, for all 1 <4 < n. Observe that
7= (=(0uf)(@), -, —(0nf)(@),1)

will do.
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Lecture 13, June. 12

The Chain Rule
13.1 Remark. Let f,g: R — R differentiable. Let u: R — R be

u=fog=f(g(t)
Then u is differentiable with «'(t) = f/(g(t)) - ¢’ (¢).

13.2 Theorem. A C R" open, f € C*(A,R). Let I C R be an open interval and let v: I — R™ be
a differentiable path such that y(t) € A for allt € I. Define u: I — R by u(t) = f(y(t)) Then u is
differentiable with

u'(t) = (V@) 7 (1)
13.3 Example. Let A = (0,00)%. f: A — R be f((s,t)) = s'. Then f € C1(A,R).
Let I = (0,00) CR and let v: I — R™ be (t) = (¢,t). Then v/(t) = (1,1)
Then u(t) = tt.

Theorem 13.2 says that

(") = u'(t)

(VHO@®) . (¢
(VAT ), (1
((t-t=1 t'Int)
tt

ttnt

)

~ =

)

Proof of Theorem 13.2. Fix ty € I for which we will prove that the Chain Rule holds. So we need

() — ulto)
t—to t— tO

=((VH)(v(to)), 7' (to))

We will do this limit by sequence. Let (tx)52; in I such that ¢, — ¢o. Will show that

i 4(t) = ulto)

k—o0 tr —to

= ((VH(v(t)), ¥ (o))

Denote v(tg) = @ € A, y(ty) =ty € A,Vk € N. Then (%)%, is a sequence in A.

Claim 1. We have #;, — @, and moreover that

Verif of Claim 1. For every k € N we have

where (1) ... (™). T — R are differentiable, hence continuous.
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When k — oo, get 7 (tx) = v (ty). So &, — (v (to), -, 7™ (to)). Hence Z) — @ as needed.

Moreover,

L A ) ke G SO AR B A )
tr — to tr — to o tr — to

) = (/) (to), -+, () (t0)) =/ (to)

Claim 2. Pick r > 0 such that B(d,r) C A, and pick kg € N such that & € B(d,r) for all k > ky. Then
for every k > ko have Co(d,Z;) C A, and we can find by € Co(d, Zy) such that

1

u(tk) — u(t())
Ttk —to

L = (VB

(Zx —a@))

Verif of Claim 2. Application of MVT.
Claim 3. Let (5@,@“;0 be as in Claim 2. Then @ — @, and therefore (Vf)(by) — (V£)(@).

Verif of Claim 3. For every k > ko we have be iCo(ﬁ, ), have || b, — @|| < || @k — @||. By squeeze
theorem by, — @. Then for every 1 < i < n get (0;f)(br) — (0;f)(a@) because 0;f is continuous on A. Then
(V£)(Br) = (VF)(@).

Claim 4. We have (t) (to)

. ou(ty) —u
L

= ((VH(v(t)), ¥ (o))

Verif of Claim 4. Have (Vf)(b) — (V.f)(@)

lim

22 — ,t
Jim (5~ ) =7 (t)

So
(V) (br) , " ito (ZFp —a)) = (VH@), Y (1)
Since o "
u(tr) — ulto . )
l — 1o = ((V)(bk) P— (T — @))
then
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Lecture 14, June. 19

Jacobian matrix, and the Chain Rule in the general case

14.1 Definition. A C R™ open, f: A — R™. For every & € A, write f(Z)
and look at the component functions f(V: A — R, 1 < i < m. If f®
feCH A R™).

= (fO(z),---, f™(z)) € R™,
€ C1(A,R). then we say that

14.2 Definition. A C R, f € C'(A,R™) with component functions f)(z),---, f(™)(z) € C*(A,R).
Then for every @ € A, the matrix

@ufM)@ - (OnfM)(@ (Vf)(@)

(Jf)(@) = : = :
@O1fM) @) - (9uf™)(@) (Vfm)(@)

is called the Jacobian matrix of f at d.

14.8 Remark. When m = 1, f € C'(A,R), so (Jf)(@) € Mixm(R). (Jf)(@) is (Vf)(@), treated as a row

matrix.

When n = 1. Take A = I = open interval in R. and take f: I — R™ with f®(z),---, f(™(z): I - R.
Have ‘
feCHAR™) <= fieCYI,R), VI<i<m

(S (a)
(Jf)(a) = :
(£ (a)

Hence (Jf)(a) is the velocity vector of f at a, treated as a column matrix.

14.4 Theorem (Chain Rule). A C R" open, f € C'(A,R"). Suppose we also have B C RP open, and
g € CY(B,R"™), where g(b) € A for all b € B.

Define the composed function u = f o g.
Then

1. we CY(B,R™)

-

2. Fizbe B, denote g(b) = a € A and consider the Jacobian matrices:

(J)N@) € Myxn(R)

(J9)(B) € Myxp(R)

-,

(Ju)(b) € M xp(R)

Then we have

-, -,

(CR)  (Ju)(b) = (Jf)(@) - (Jg)(b)
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14.5 Remark. Can write (CR) as

-, -,

(J(f 2 9))(b) = (If)(g(b)) - (Jg) (D)

This is analogous to chain rule in calc 1

(fog)'(b) = f'(g(b) - g'(b)

with appropriate dictionary
Derivatives <= Jacobian matrices

multiplication of numbers <= multiplication of matrices

Consider the special case 1 = n — 1. So BC R, g: B — R" is a C'-path and have
(g™ (b)

(Jg)(d) =
(g™ (b)

On the other hand, since m = 1, have f € C'(A,R) and (Jf)(@) = [(01f)(@), - , (Onf)(@)].
Put u = f o g. Denote g(b) = a.

Theorem 13.2 says
W' (b) = ((Vf)(@), g'(b))

Theorem 14.4 says
(Ju)(b) = (If)(@) - (Jg)(b)
14.6 Example ("Polar Coordinates in R?”). p=2,n=2 B={(r,0) |0 <r < 1,0 <6 <27} C R?,
A={FecR?|||Z|| <1} CR?% Let g: B— A, g((r,0)) = (r - cos 0,7 -sin6).

The Jacobian matrix for g
cosf —r-sinf
(Jg)((r.0)) = sinf r-cosf
Now take f € CY(A,R), say f((x,y)) = (z® + y*)*/2. Consider the composed function v = f o g,
u: B—R.

(CR) says that for b € B we have

-,

(Ju)(B) = (Jf)(9(5)) - (T9)(B)

[(alu) (7’7 6)7 (8211,) (Tv 9”
=[(O1f)(r-cos@,r-sinb), (Daf)(r - cosb,r -sinf)] - [

cos —r-sinf
sinf r-cosf

= [3r% - cos 6, 3r? - sind)] -

cosf) —r-sinf
sinf r-cosf

= [3r%,0]

- dg 0O
14.7 Remark. b € B is denoted as (r,0), so instead of d1g, d2g, people use a—g, a—z
,
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Lecture 15, May. 23

C?-functions and the 2nd derivative test

15.1 Definition. A C R" open, f € C'(A,R). Consider the partial derivative 9;f: A - R, 1 <i <n. If
0;f € CY(A,R), V1 <i<n, wesay f € C?(A,R).

So in order to have f € C?(A,R), we need the second partial derivatives 9;(9;f) to exist and be
continuous on A (1 <4,j <n)

Convention: omit brackets, just write 8;0; f. Also if i = j, then write 82 f instead of 9;0; f.
15.2 Theorem. A C R" open, f € C*(A,R). Then for every 1 <i,j <n we have 9;0;f = 8;0;f.
15.3 Definition. A C R" open, f € C?(A,R), @ € A. The n x n matrix

@21)(@) (0102f)(@) - (010a)(d)
[Hf](@) = o
02)(@) (On02f)(@) -+ (07£)(@)

is called the Hessian matrix of f at @. Theorem 15.2 says that H = H”

15.4 Remark. Let A1,--- , A, be the eigenvalues of H. Important points

1. Can diagonalize: H = VDVT where D is a diagonal matrix and V is an orthogonal matrix.

2. If A\y,---, Ay > 0, then we say that H is positive definite. Equivalent description for this property is
(H-¢,7) >0 for all ¥ € R", ¥ # 0. Likewise for negative definite.

15.5 Remark. I C R open interval, f: I — R twice differentiable. Suppose that f’(a) = 0, f”(a) # 0, then
f"(a) > 0 then a is local minimum for f and if f”(a) < 0 then a is local maximum for f.

15.6 Theorem. A C R" open, f € C?(A,R), @ € A. Consider the gradient vector (Vf)(@) € R™ and
the Hessian matriz [Hf](@) € My xn(R) with eigenvector A\1,--- , A, € R. Suppose that (Vf)(@) =0
stationary point for f), and A1, ,A\p # 0. Then

1. A1, -+, A\, > 0 ([Hf](Q) is positive def) then @ is local min for f

2. Ay, A <0 ([HF)(@) is negative def) then @ is local maz for f

3. If 34, j such that \; > 0, \; < 0 then @ is not a local extremum for f.
15.7 Example. n =2, f € C*(R%,R). f((s,t)) = s> + 13 — 3st, 5,t € R.
o
B

15.8 Remark. A C R? open, f € C?(A,R), @ € A with (Vf)(@) = 0. Denote [Hf](d) = [ 5 } and A1, Ao

be the eigenvector of [ g f ]

Linear algebra facts
M+ X =a+ vy

AM-dg=a-v— [

2nd derivative test gives this

28



1. if aB < B?, then @ is saddle point for f.
2. if a8 > % and o > 0, then @ is local min for f

3. if af > % and o < 0, then @ is local min for f
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Lecture 16, May. 26

Basic integrability I: divisions and lower/upper sums

16.1 Definition. Let A be a non-empty set in M,,. By a division of A we mean a set A = {Ay,--- ,A4,}
where Ay, -+, A, are non-empty sets in M,,, such that A; U---UA, = Aand A;NA; =0 for i # j.

16.2 Definition. A # () in M,,. Let A = {A;,--- A} and I' = {By,--- , By} be two divisions of A. We
say that I" refines A written as I' < A to mean that for every 1 < j < ¢ there exists 1 < i < r such that

16.3 Remark. Condition from Definition 16.2 forces every A; of A to be a disjoint union of B;’s from I
That is, we can rewrite A = {Ay,--- , A},

T'={Bi1,-,Big, - Br1, - ,Brg}

where ¢ =q1 + - + ¢

16.4 Proposition. A # () in M,,. Let A’ and A" be two divisions of A. Then exists division T of A such
that T' < A" and T < A",

Proof. Write A" = {Af,--- A}, A” = {A7,.-- | A]}.
Put I'= {A]NAY[1<i<r1<j<s AjUAS#0} O

Now start looking at functions defined on sets A € M,,. Need to review: oscillation.

Let f: A — R. Suppose f is bounded. For B C A, we denote

sup(f) = sup{f(Z) | ¥ € B}
B

inf(f) = inf{/(2) | & € B}
Then we put

ose(f) = sup{| f(7) — () || 7,5 € B}

16.5 Definition. f: A — R bounded function where A € M,,. Let A = {A;,---, A} be a division of A.
Then

Z Vol(A sup (f)

is called the upper (Darboux) sum for f and A and

Z Vol(4;) - inf(f)

is called the lower (Darboux) sum for f and A.
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16.6 Remark. A, f, A as in Definition 16.5, have

U(f,A Z Vol(A osc )

In particular, it is obvious that U(f, A) > L(f, A).
16.7 Lemma. A € M,,, f: A = R bounded. Let A,T" be divisions of A such that T' < A. Then we have
U(f,T) < U(F,A) and L(1,T) = L(f, A).

Proof. Will prove the inequality for upper sums. Let A = {Ay,--- A, }. ' ={B11,---B1,g, "+ ,Br1, - Brg.}
where Bi,l U---y Bi,qi = Ai7 1 S 7
legr.

Then

ZVol sup( <> [ voim) | -swwir) = 0r.)
j=1 '

=1 \j=1 i=1

16.8 Proposition. A € M,,, f: A = R. Let A’, A" be two divisions of A. Then U(f,A") > L(f, A").
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Lecture 17, June. 30

Basic integrability II: the integral.

17.1 Definition. A € M,,. f: A — R bounded. The set of real numbers
T ={U(f,A) | A division of A}
is bounded from below, so has an inf.

The number inf(7T") € R is called the upper integral of f on Am denoted as TAf or TAf(f)df.

The set of real numbers
S ={L(f,A) | A division of A}

is bounded from above, so has an sup.

The number sup(S) € R is called the lower integral of f on Am denoted as fAf or fAf(f)df.

One hasiAfSTAf
17.2 Definition. If iAf = TAf, then we say that f is integrable on A, and define its integral to be
iAf = fA f= TAf
17.3 Theorem. A € M,,, f: A — R bounded. Then TFAE

1. f is integrable on A.
2. for every e > 0 there exists a division A of A such that U(f,A) — L(f,A) <.
3. There exists a sequence (M), of diwisions of A such that U(f,Ar) — L(f,Ar) — 0.

Proof. Will prove (1) — (2). Others are left as exercises.

Denote fA f=1. So have fAf =1= TAf. Given € > 0, we need to find a division A of A such that
U(va) _L(f7A) <€

The idea is to find A’ such that I < U(f,A’) < I+ ¢/2. Find A” such that I —¢/2 < L(f,A"”) < I.
Then let A < A’ and A < A”. Then we find such A. O
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