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Lecture 1, Sept. 12

Mathematical tools LATEX

MikTex, Winshell

Basics on Sets and Functions

1.1 Definition. Basic Sets

• N = Natural numbers = {1, 2, 3, . . . }

• Z = Integers = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . . }

• Q = {mn | n ∈ N,m ∈ Z, gcd(n, |m|) = 1}

• R = Real Numbers

• R\Q = {x ∈ R | x is not in Q}

Notation.

S ⊂ X → S is a subset of X

If S, T ⊂ X then S ∪ T = {x ∈ X | x ∈ S or x ∈ T}

If S, T ⊂ X then S ∩ T = {x ∈ X | x ∈ S and x ∈ T}

Given a collection {Aα}α∈I of subsets of X

⋃
α∈I

Aα = {x ∈ X | x ∈ Aα for some α ∈ I}

⋂
α∈I

Aα = {x ∈ X | x ∈ Aα for all α ∈ I}

∅ = empty set, ∅ ⊂ X

What if I = ∅, what is
⋃
α∈∅

Aα

Define ⋃
α∈∅

Aα = ∅

Then ⋂
α∈∅

Aα =??

Given S, T ⊂ X we define

S\T = {x ∈ X | x ∈ S, x does not belong to T}

We denote X\T by T c = compliment of T in X = {x ∈ X | x does not belong to T}
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Note.
(S ∪ T )c = Sc ∩ T c

De Morgans Law

1.2 Theorem.
(
⋃
α∈I

Aα)c =
⋂
α∈I

Acα

Proof.

x ∈ (
⋃
α∈I

Aα)c ⇐⇒ x is not a member of
⋃
α∈I

Aα

⇐⇒ x is not in Aα ∀α ∈ I
⇐⇒ x ∈ Acα ∀α ∈ I

⇐⇒ x ∈
⋂
α∈I

Acα

Note. From this we really should have

⋂
α∈∅

Aα = (
⋃
α∈∅

Acα)c

= ∅c

= X

Power Set

1.3 Definition. Given X, the Power Set of X is the set of all subset of X

Notation.

P (X) = power set of X

= {S | S ⊂ X}

Note. We can observe that
∅, X ∈ P (X)
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Lecture 2, Sept. 14

New Section 12:30-1:20 CPH 3604
Tutorial Moved to DC 1350 Th 4:30-5:20

Greek Letters

• α - alpha

• β - beta

• δ - delta

• ε - epsilon

• γ - gamma

Properties of N
N = {1, 2, 3, 4, . . . }

Mathematical Induction

2.1 Axiom. Assume S ∈ N such that

1. 1 ∈ S

2. If k ∈ S, then k + 1 ∈ S

Then S = N

Proof by Induction

1. Establish for each n ∈ N a statement P (n) to be proved.

Example. Let P (n) be the statement that
∑n
i=1 i = n(n+1)

2 , show this is true for all n ∈ N.

Let S = {n ∈ N | P (n) is true}, show S = N

2. Base Case: show that P (1) is true. ie): 1 ∈ S

3. Inductive Step: Assume that P (k) is true for some k (Inductive Hypothesis). Use this to show that
P (k + 1) is also true. ie): k ∈ S ⇒ k + 1 ∈ S

By the Principle of Mathematical Induction, S = N

2.2 Example. Prove that

n∑
i=1

i =
n(n+ 1)

2

Proof. Step.1 Let P (n) be the statement that

n∑
i=1

i =
n(n+ 1)

2
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Step.2 Let n = 1 then P (1) = 1 = 1(1+1
2 . Hence P (1) is true.

Step.3 Assume that P (k) is rue for some k

P (k)
k(k + 1

2

Step.4

k+1∑
i=1

i =

k∑
i=1

i+ (k + 1)

=
k(k + 1)

2
+ (k + 1)

=
(k + 1)(k + 2)

2

Hence P (k + 1) is true

Step.5 By Principle of Mathematical Induction, P (n) is true for all n ∈ N

2.3 Example. Prove that 3n + 4n is divisible by 7 for every odd n

Proof. Let P (k) be the statement that 32k−1 + 42k−1 is divisible by 7.

Base case: k = 1, P (1) is true.

Inductive Step: Assume P (j) is true.

32(j+1)−1 + 42(j+1)−1

=9(32j−1) + 16(42j−1)

=9(32j−1 + 42j−1) + 7(42j−1)

Hence P (j + 1) is true.

By Principle of Mathematical Induction, P (k) is true for all n
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Lecture 3, Sept. 16

Well Ordering Property

3.1 Theorem. If S ∈ N and S 6= ∅, then S contains a least element.

The following are equivalent

1. Principle of Mathematical Induction

2. Strong Induction

3. Well Ordering Principle

Note. A function f such that f : N× N→ N can be defined by f((m,n)) = 7n13m

Properties of R

Interval

3.2 Theorem. A set I ∈ R is an interval if for each x, y ∈ I with x ≤ y and z ∈ I with x ≤ y ≤ z, we have
z ∈ I

3.3 Question. 1. Is ∅ an interval? Yes

2. Is {3} an interval? Yes

Other Intervals

1. [a, b] = x ∈ R | a ≤ x ≤ b→ Closed Interval

2. (a, b) = x ∈ R | a < x < b→ Open Interval

3. [a, b) = x ∈ R | a ≤ x < b→ Half Open Half Closed Interval

4. [a,∞) = x ∈ R | a ≤ x→ Closed Ray

5. (∞, b] = x ∈ R | x ≤ b→ Closed Ray

6. (0,∞)

7. (−∞, b)

8. (−∞,∞) = R
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Lecture 4, Sept. 19

Least Upper Bound Property

Upper Bound

4.1 Theorem. Let S ⊂ R then α ∈ R is an upper bound for S if x ≤ α for all x ∈ S. We say that S is
bounded above if S has an upper bound.

We say that β is a lower bound for S if β ≤ x for all x ∈ S. We say that S is bounded below if S has a
lower bound.

We say that S is bounded if it is bounded above and below.

4.2 Example. Let S = {x1, x2, . . . , xn} be finite.

By relabeling, if necessary we can assume that

x1 < x2 < · · · < xn

Then β = x1, β is a lower bound and α = xn is an upper bound.

4.3 Theorem. Every finite set is bounded.

4.4 Example. Let S = [0, 1) = {x ∈ R | 0 ≤ x < 1} (finite interval)

5 is an upper bound. -1 is a lower bound.

1 is also an upper bound. Moreover if γ is any upper bound of S, then 1 ≤ γ

Least Upper Bound

4.5 Theorem. We say that α is the least upper bound of a set S ⊂ R if

1) α is an uppper bound of S

2) if γ is an upper bound of S, then α ≤ γ

We write
α = lub(S)

(Sometimes α os called the supremum of S and is denoted by α = sup(S))

Back to the example S = [0, 1). 0 is a lower bound and if γ is any lower bound, then γ ≤ 0

Greatest Upper Bound

4.6 Theorem. We say that β is the greatest lower bound of a set S ⊂ R if

1) β is an lower bound of S

2) if γ is an lower bound of S, then γ ≤ β
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We write
β = glb(S)

(Sometimes β os called the infimum of S and is denoted by β = inf(S))

4.7 Example. if S = [0, 1), lub(S) = 1, glb(S) = 0.

Note. Is ∅ bounded (above or below)?

Note: 6 is an upper bound for ∅. If not, there exists an element in ∅ that is greater than 6. Similarly, 6 is a
lower bound.

In fact, if γ ∈ R then γ is both an upper and a lower bound of ∅. ∅ is a bounded set.

4.8 Example. Let S = {x ∈ Q | x2 < 2} ⊂ R
√

2 is an upper bound and −
√

2 is a lower bound. And lub(S) =
√

2, glb(S) = −
√

2

4.9 Example. Let S = {x ∈ Q | x2 < 2} ⊂ Q

S does not have a least upper bound or a greatest lower bound.

4.10 Question. If S ⊂ R is bounded above, does it always have a least upper bound?

Least Upper Bound Property

4.11 Theorem. If S ⊂ R is non-empty and bounded above, then S has a least upper bound.

Observation

1) ∅ does not have a lub

2) If we only have rational numbers in the world, then S = {x | x2 < 2} does not have a lub. In other
words, Least Upper Bound Property fails for Q

4.12 Question. is N bounded?

1) N is bounded below, glb(S) = 1
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Lecture 5, Sept. 21

1) No office hours this afternoon

2) WA1→ Due 2:30 PM Monday, Sept. 26. Submit in dropbox outside Math Tutorial Center.

Least Upper Bound Property If S ⊂ R is non-empty and bounded above, then S has a least upper
bound.

Archimedean Property I

5.1 Theorem. N is not bounded above.

Proof. Suppose that N was bounded above. Then N has a least upper bound α.

Note that α− 1
2 < α. Hence α− 1

2 is not an upper bound for N. Then there exists n ∈ N with α− 1
2 < n ≤ α.

But then n+ 1 ∈ N and n+ 1 > α which is impossible.

Therefore N must not be bounded above.

Note. Let S 6= ∅ ⊂ R be bounded above. Let α = lub(S). if ε > 0 then there exist x0 ∈ S with α−ε < x0 ≤ α.

Archimedean Property II

5.2 Corollary. Let ε > 0, Then there exists n ∈ N such that

0 <
1

n
< ε

Proof. Take α = 1
ε in Archimedean Property I.

Density of R

5.3 Definition. A subset S ⊂ R is said to be dense if for every ε > 0 and x ∈ R,

S ∩ (x− ε, x+ ε) 6= ∅

or equivalently if S ∩ (a, b) 6= ∅ for all a < b in R

5.4 Proposition. Q and R\Q = Qc are dense in R

Absolute Values

5.5 Definition.

f(x) =

{
x x ≥ 0

−x x < 0
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5.6 Example.

g(x) =
|x|
x

Domain = {x ∈ R | x 6= 0}

g(x) =

{
1 x > 0

−1 x < 0

Geometric Interpretation of |x|

• |x| represents the distance from x to 0.

• |x− a| represents the distance from x to a.

Note. Distance between (0, 0) and (x, y) √
x2 + y2

Properties of |x|

1) |x| ≥ 0 and |x| = 0 ⇐⇒ x = 0

2) |ax| = |a||x| for all a ∈ R, x ∈ R

3) Triangle Inequality
|x− z|+ |z − y| ≥ |x− y|

5.7 Theorem. Triangle Inequality If x, y, z ∈ R, then

|x− z|+ |z − y| ≥ |x− y|

Proof. Use Geometric Interpretation.

5.8 Theorem. Variants I For all x, y ∈ R,

|x+ y| ≤ |x|+ |y|

5.9 Theorem. Variants II For all x, y ∈ R,

||x| − |y|| ≤ |x− y|
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Lecture 6, Sept. 23

Inequalities

6.1 Example. Find all x ∈ R such that
0 < |x− 2| ≤ 4

Solution. [−2, 6] with x 6= 2

Three Basic Inequalities

1. |x− a| < δ

2. 0 < |x− a| < δ

3. |x− a| ≤ δ

Solution. 1. (a− δ, a+ δ) = {x ∈ R | a− δ < x < a+ δ}

2. (a− δ, a+ δ) with x 6= a = {x ∈ R | a− δ < x < a+ δ, x 6= a}

3. [a− δ, a+ δ] = {x ∈ R | a− δ ≤ x ≤ a+ δ}

Sequence

6.2 Definition. A sequence is an infinite ordered list of real numbers.

Notation. {1, 2, 3, 4, . . . } or {1, 12 ,
1
3 ,

1
4 , . . . }

6.3 Definition. A sequence of real numbers is a function a : N→ R

The element f(n) is called the n-th term of the sequence. We often denote this by f(n) = an

Notation. We can denote sequences in many ways

1. f(n) = 1
n for all n ∈ N

2. Let an = 1
n

3. {1, 12 , . . . ,
1
n , . . . }

4. { 1n}

5. Sometimes we define sequences recursively.

a1 = 1 and an+1 =
√

3 + 2an for all n ≥ 1.

Graphing Sequence

Subsequence

6.4 Definition. Let {an} be a sequence, and let {nk} be a sequence of natural numbers with n1 < n2 <
n3 < · · · < nk < nk+1 < . . . .

The sequence bk = ank → {bk}∞k=1 is called subsequence of {an}. We often write this as

{an1 , an2 , . . . , ank , . . . }
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Important Subsequences Given {an}, let n0 ∈ N ∪ {0}. Define

bk = an0+k

This sequence is called a tail of {an}

Limits of Sequences Consider { 1n} = {1, 12 , . . . ,
1
n , . . . }

Note. As n gets larger and larger, the terms of the sequence { 1n} get closer and closer to 0. We would like
to say that the sequence { 1n} converges to 0 and call 0 the limit of { 1n}.

6.5 Definition. (Heuristic Definition of Convergence). We say that a sequence {an} has a limit L if
for every positive tolerance ε > 0, the term an will approximate L with an error less than ε so long as the
index n is large enough.
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Lecture 7, Sept. 26

Writing Assignment 2 is due Friday Oct 14th.

Convergence of Sequences

7.1 Definition. Heuristic definition I We say that a sequence {an} converges to a limit L if as n gets
larger and larger the ans get closer and closer to L.

7.2 Definition. Heuristic definition II We say that a sequence {an} converges to a limit L if for every
positive tolerance ε > 0, we have that the terms in {an} approximate L with an error at most ε, provided
that n is large enough.

7.3 Definition. Convergence of a Sequence We say that {an} converges to a limit L if for every ε > 0,
there exists a cutoff N0 ∈ N such that if n ≥ N0, then |an − L| < ε

If no such L exists, we say that {an} diverges.

7.4 Example. Consider {(−1)n+1} = {1,−1, 1,−1, . . . }. Does this have a limit?

Proof. Let ε = 1. Suppose L = limn→∞ an. Let N0 be such that if n ≥ N0, then |a− L| < 1

Let n1 ≥ N0 with n0 even. Then

| − 1− L| = |an − L| < 1

→ L ∈ (−2, 0)

Let n1 ≥ N0 with n0 odd. Then

|1− L| = |an − L| < 1

→ L ∈ (0, 2)

So
L ∈ (−2, 0) ∩ (0, 2)

which is impossible.

Hence {an} diverges.

Note. Suppose that limn→∞ an = L. Let ε > 0. What can we say about the terms in {an} that are in
(L− ε, L+ ε)?

For some N0, if n ≥ N0, then an ∈ (L− ε, L+ ε). ie) (L− ε, L+ ε) contains a tail of the sequence.

7.5 Proposition. Let {an} be a sequence. Then the following are equivalent.

1. L = limn→∞ an

2. for every ε > 0, (L− ε, L+ ε) contains a tail of {an}

3. for every ε > 0, (L− ε, L+ ε) contains all but finitely many an

4. for open interval (a, b) with L ∈ (a, b), we have (a, b) contains a tail of {an}

12



5. for open interval (a, b) with L ∈ (a, b), the interval (a, b) contains all but finitely many an

7.6 Question. Can {an} have more than 1 limit?

7.7 Theorem. Uniqueness of Limit Suppose that limn→∞ an = L and limn→∞ an = M , then L = M

Proof. Assume that L < M . Let ε = M−L
2 .

We can choose N1 large enough so that if n ≥ N1, an ∈ (L− ε, L+ ε)

We can also choose N2 large enough so that if n ≥ N2, an ∈ (M − ε,M + ε)

Let N0 = max{N1, N2}. Choose n ≥ N0. Then an ∈ (L− ε, L+ ε) ∩ (M − ε,M + ε)

But (L− ε, L+ ε) ∩ (M − ε,M + ε) = ∅
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Lecture 8, Sept. 28

8.1 Theorem. Assume that {an} converges. then {an} is bounded.

Proof. Assume that
L = lim

n→∞
an

Let ε = 1. Then there exists N0 ∈ N so that if n ≥ N0 then |an − L| < 1

If n ≥ N0,then

|an| = |an − L+ L| ≤ |an − l|+ |L|
< 1 + |L|

Let
M = max|a1|, |a2|, . . . , |aN0−1|, |L|+ 1

.

Then |an| ≤M for all n ∈ N.

Question: Do all bounded sequences converge? No.

8.2 Definition. 1. We say that a sequence {an} is increasing if an < a{n+ 1} for all n ∈ N

2. We say that {an} is non-decreasing if an ≤ an+1 for all n ∈ N

3. We say that {an} is decreasing if an+1 < an for all n ∈ N

4. We say that {an} is non-increasing if an+1 ≤ an for all n ∈ N

We say that {an} is monotonic if {an} satisfies one of the conditions.

Example:

1.

{an} = { 1

n
}

is decreasing, since
1

n+ 1
≤ 1

n

for all n ∈ N

2.
{cos(n)}

3. Let a1 = 1,
an+1 =

√
3 + 2an

8.3 Theorem. Monotone Convergence Theorem

If {an} is monotonic and bounded, then {an} converges.

14



Figure 1: y =
√

3 + 2x and y = x

Proof. Assume that {an} is non-decreasing and bounded above. Let L = lub({an})

Let ε > 0, then L− ε is not an upper bound. Then there exists N0 ∈ N so that L− ε < aN0
≤ L. If n ≥ N0,

then L− ε < aN0
≤ an ≤ L, so |an − L| < ε. Hence L = limn→∞ an

Similarly, if {an} is non-increasing then L = limn→∞ an where L = glb({an})

8.4 Example. Let a1 = 1,
an+1 =

√
3 + 2an

We know that 0 ≤ an < an+1 ≤ 3 for all n ∈ N. {an} is increasing and bounded above. Hence {an}
converges.

8.5 Corollary. A monotonic sequence {an} converges iff it is bounded.

8.6 Definition. We say a sequence diverges to ∞ if for every M > 0 we can find a a cutoff N0 ∈ N such
that if n ≥ N0, then M ≤ an, we write limn→∞ an =∞.
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Lecture 9, Sept. 29

9.1 Definition. We sat that {an} diverges to∞ if for every M ≥ 0 there exists N0 ∈ N such that if n ≥ N0,
then an > M

We write
lim
n→∞

an =∞

Figure 2: {an} and M = 2

9.2 Question. Does every sequence {an} that is not bounded above diverges to ∞?

No. {0, 1, 0, 2, 0, 3, 0, 4, 0, 5, . . . }
Note. If {an} is non-decreasing then either

1) {an} is bounded and convergent

2) {an} is unbounded and diverges to ∞

9.3 Question. If a sequence is not bounded above, does it have a sub-sequence that diverges to ∞?

Series

Given a Sequence {an}, what does it mean to sum all of the terms of the sequence? That is what does the
formal sum mean

a1 + a2 + a3 + · · · =
∞∑
n=1

an

9.4 Example.
∞∑
n=1

(−1)n+1
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9.5 Example.
∞∑
n=1

1

2n

9.6 Definition. For each k ∈ N, the kth partial sum is

Sk =

k∑
n=1

an = a1 + a2 + a3 + · · ·+ ak

We say that
∑∞
n=1 an converges if the sequence {Sk} of partial sums converges. Otherwise we say the series

diverges.

If the series converges we let
∞∑
n=1

an = lim
k→∞

Sk = lim
k→∞

k∑
n=1

an

9.7 Example.
∞∑
n=1

(−1)n+1

Sk =

{
1 if k is odd

0 if k is even

Thus Sk diverges

Geometric Series Let r ∈ R, consider

∞∑
n=0

rn = 1 + r + r2 + r3 + . . .

Sk =

k∑
n=0

rn = 1 + r + r2 + r3 + · · ·+ rk

Sk =
1− rk+1

1− r
if r 6= 1

Note. If |r| < 1 then limk→∞ rk+1 = 0

If |r| > 1 then limk→∞ rk+1 does not exists

If r = −1 then limk→∞ rk+1 does not exists.

If r = 1 then Sk = k which diverges to infinity.

9.8 Example. r = 1
2 ,

∞∑
n=0

rn =
1

1−
1

2

= 2
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Lecture 10, Sept. 30

Series

10.1 Definition. A series
∑∞
n=1 an is positive is for all n ∈ N, if Sk =

∑k
n=1 an, then Sk+1−Sk = ak+1 ≥ 0

10.2 Example. Harmonic Series Does

∞∑
n=1

1

n
converge?

Let Sk =

k∑
n=1

1

n
,

S1 = 1 =
2

2

S2 = 1 +
1

2
=

3

2

S4 = 1 +
1

2
+

1

3
+

1

4
> 1 +

1

2
+

1

4
+

1

4
=

4

2

S8 = 1 +
1

2
+

1

3
+

1

4
+

1

5
+

1

6
+

1

7
+

1

8

> 1 +
1

2
+

1

4
+

1

4
+

1

8
+

1

8
+

1

8
+

1

8
=

5

2
...

S2k >
2 + k

2

Since {2 + k

2
} is not bounded, {Sk} is not bounded.

10.3 Example.

∞∑
n=2

1

n2 − n

Note.

1

n2 − n
=

1

n(n− 1)

=
1

n− 1
− 1

n

Solution.

S1 = 1− 1

2
= 1− 1

2

S2 = 1− 1

2
+

1

2
− 1

3
= 1− 1

3

S3 = 1− 1

2
+

1

2
− 1

3
+

1

3
− 1

4
= 1− 1

4
...

Sk = 1− 1

k
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As k →∞,

∞∑
n=2

1

n2 − n
= 1

10.4 Example.

∞∑
n=1

1

n2

Note. For n ≥ 2,
1

n2
<

1

n2 − n

Tk =

k∑
n=1

1

n2
= 1 +

1

22
+

1

32
+ · · ·+ 1

k2

< 1 +
1

22 − 2
+

1

32 − 2
+ · · ·+ 1

k2 − k
< 1 + 1

= 2

Since Tk ≤ 2 for all k, {Tk} is bounded and by the Monotone Convergence Theorem is convergent with

1 ≤
∞∑
n=1

1

n2
≤ 2.

In fact,

∞∑
n=1

1

n2
=
π2

6

10.5 Example. Consider

∞∑
n=1

1

n!
, does this converge?

Note that
1

n!
<

1

2n
for n ≥ k.

In fact,

∞∑
n=1

1

n!
= e

Note.
∞∑
n=1

(−1)n+1

n
= 1− 1

2
+

1

3
− 1

4
+ . . .

Arithmetic Rules for Sequences

10.6 Question. Assume an → 3, bn → 7.

What can you say about

1) {4an}

2) {anbn}

3) {an + bn}

19



4) {an
bn
}

10.7 Theorem. Arithmetic Rules for Sequences Let {an}, {bn} be such that limn→∞ an = L, limn→∞ bn =
M .

Then

1) limn→∞ can = cL for all c ∈ R

2) limn→∞ an + bn = L+M

3) limn→∞ anbn = LM

4) lim
n→∞

1

an
=

1

L
if L 6= 0

5) lim
n→∞

an
bn

=
L

M
if M 6= 0

Proof. 1) If c = 0 then can = 0 for all n. Hence limn→∞ can = limn→∞ 0 = 0L = cL Suppose c 6= 0, Let

ε > 0. We want N so that if n ≥ N , |can − cL| < ε⇔ |an − L| <
ε

|c|

Choose N0 such that if n ≥ N0 we have |an − L| <
ε

|c|
If n ≥ N0,

|can − cL| ≤ |an − L||c| <
ε

|c|
|c| = ε
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Lecture 11, Oct. 3

WA2 now due Monday Oct. 17

EA2 due today

11.1 Theorem. Arithmetic Rules for Sequences Let {an}, {bn} be such that limn→∞ an = L, limn→∞ bn =
M .

Then

1) limn→∞ can = cL for all c ∈ R

2) limn→∞ an + bn = L+M

3) limn→∞ anbn = LM

4) lim
n→∞

1

an
=

1

L
if L 6= 0

5) lim
n→∞

an
bn

=
L

M
if M 6= 0

6) lim
n→∞

k
√
an =

k
√
L if L ≥ 0

Proof.

1) If c = 0 then can = 0 for all n. Hence limn→∞ can = limn→∞ 0 = 0L = cL Suppose c 6= 0, Let ε > 0.

We want N so that if n ≥ N , |can − cL| < ε⇔ |an − L| <
ε

|c|

Choose N0 such that if n ≥ N0 we have |an − L| <
ε

|c|
If n ≥ N0,

|can − cL| ≤ |an − L||c| <
ε

|c|
|c| = ε

2) Consider

|(an + bn)− (L+M)| = |an − L+ bn −M |
≤ |an − L|+ |bn −M |

Let ε > 0. Choose N1 ∈ N so that

n ≥ N1 → |an − L| <
ε

2

Choose N2 ∈ N so that

n ≥ N2 → |bn −M | <
ε

2

Let N0 = max{N1, N2}. If n ≥ N0

|(an + bn)− (L+M)| ≤ |an − L|+ |bn −M |

<
ε

2
+
ε

2
= ε
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3) Consider |anbn − LM |

|anbn − LM |
= |anbn − bnL+ bnL− LM |
= |(an − L)bn + L(bn −M)|
≤ |(an − L)bn|+ |L(bn −M)|

By 1), we can find N1 so that if n ≥ N1,

|L| |bn −M | ≤
ε

2

Since {bn} is convergent it is bounded. So there exists c > 0 so that |bn| < c

Then |bn| |an − L| < c |an − L|
Choose N2 so that if n ≥ N2

|an − L| <
ε

2c

If N0 = max{N1, N2} and n ≥ N0 then

|anbn − LM | <
ε

2
+
ε

2
= ε

4) ∣∣∣∣ 1

an
− 1

L

∣∣∣∣ =
|an − L|
|an| |L|

Since an → L,L 6= 0 we can find N1 ∈ N so that if n ≥ N1, then

|an − L| <
|L|
2
→ |an| ≥

|L|
2

If n ≥ N1 then ∣∣∣∣ 1

an
− 1

L

∣∣∣∣ =
|an − L|
|an| |L|

≤
|an − L|
|L|
2
|L|

=
|an − L|
|L|2

2

Let ε > 0. Choose N2 so that if n ≥ N2

|an − L|
|L|2

2

< ε

Let N0 = max{N1, N2} if n ≥ N0 ∣∣∣∣ 1

an
− 1

L

∣∣∣∣ < ε

5) Follows from 3 and 4.

6) Homework
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Note. If limn→∞ an = L, limn→∞ nn = M

lim
n→∞

an
bn

=
L

M
if M 6= 0

What happens if M = 0?

It depends on an.

11.2 Example. an = bn =
1

n

11.3 Example. an =
1

n
, bn =

1

n2

11.4 Proposition. Assume that limn→∞
an
bn

exists and that limn→∞ bn = 0 then limn→∞ an = 0.

Proof.

an = (bn)(
an
bn

)

= lim
n→∞

an

= lim
n→∞

bn lim
n→∞

an
bn

=0L

=0
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Lecture 12, Oct. 5

12.1 Example. Find
3n2 + 2n

5n2 + 2

Solution.

lim
n→∞

3n2 + 2n

5n2 + 2
= lim
n→∞

n2

n2

3 +
2

n

5 +
2

n2

=
lim
n→∞

3 + lim
n→∞

2

n

lim
n→∞

5 + lim
n→∞

2

n2

=
3 + 0

5 + 0

=
3

5

Note. If akbj 6= 0

lim
n→∞

a0 + a1n+ · · ·+ akn
k

b0 + b1n+ · · ·+ bjnj
=



ak
bj

if k = j

0 if j > k

∞ if j < k, akbj > 0

−∞ if j < k, akbj < 0

12.2 Example. Find

lim
n→∞

√
n2 + n− n

Solution.

lim
n→∞

√
n2 + n− n = lim

n→∞
(
√
n2 + n− n) ·

√
n2 + n+ n√
n2 + n+ n

= lim
n→∞

n2 + n− n2√
n2 + n+ n

= lim
n→∞

n√
1 +

1

n
+ 1

=
n√

1 + lim
n→∞

1

n
+ 1

=
1

2

12.3 Example. a1 = 1 and an+1 =
1

1 + an
. Suppose that {an} converges, find limn→∞ an

12.4 Proposition. A sequence {an} converges to L if and only if every sub-sequence {ank} converges to L
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Proof. Assume that limn→∞an = L. Let {ank} be a sub-sequence. Let ε > 0, we can find a N0 so that if
n ≥ N0, then |an − L| < ε.

Let k0 ≥ N0, then k ≥ k0 ⇒ nk ≥ nk0 ≥ N0

Hence |ank − L| < ε

Solution. If
lim
n→∞

an = lim
n→∞

an+1

Then,

L =
1

1 + L

L2 + L− 1 = 0

L =
−1±

√
5

2

12.5 Question. Does {an} converge?

Solution. Claim that for any k,
a2k < a2k+2 < a2k+1 < a2k−1

Proof by induction.

{a2k−1} is decreasing and bounded below by 0

{a2k} is increasing and bounded above by 1.

Let limn→∞ a2k = M and limn→∞ a2k−1 = L.

Since M =
−1 +

√
5

2
and L =

−1 +
√

5

2
, M = L

Thus, {an} converges.

12.6 Example. FInd

lim
n→∞

cos(n)

n
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Lecture 13, Oct. 6

Squeeze Theorem

13.1 Example. Find

lim
n→∞

cos(n)

n

Observation:
|cos(n)| ≤ 1

−1

n
≤ cos(n)

n
≤ 1

n

13.2 Theorem. Squeeze Theorem If {an}, {bn}, {cn} are such that an ≤ bn ≤ cn with limn→∞ an =
L = limn→∞ cn, then limn→∞ bn = L

Proof. Let ε > 0, then exists N0 ∈ N so that if n ≥ N0 then an ∈ (L− ε, L+ ε) and cn ∈ (L− ε, L+ ε)

If n ≥ N0,
L− ε < an ≤ bn ≤ cn < L+ ε

|bn − L| < ε

Solution. We know that
−1

n
≤ cos(n)

n
≤ 1

n

since |cos(n)| ≤ 1

Since limn→∞− 1
n = 0 = limn→∞

1
n

Then

lim
n→∞

cos(n)

n
= 0

13.3 Example.

lim
n→∞

(1 +
1

n
)n = e

Note. If {an} is bounded, then

lim
n→∞

an
n

= 0

Bolzano-Weierstrass Theorem

Note. We know that convergent sequences are bounded. But bounded sequences do not have to converge.

Does every bounded sequences have a convergent sub-sequence?

Strategy Bounded + monotonic ⇒ convergent

Does every sequence have a monotonic sub-sequence

13.4 Definition. Given {an} we call an index n0 a peak point for {an} if an < an0 for all n ≥ n0
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13.5 Lemma. Peak Point Lemma Every sequence {an} has a monotonic sub-sequence.

Proof. Let P = {n ∈ N | n is a peak point of {an}}

Case 1. P is infinite.

Let n1 = least element of P

Let n2 = least element of P
{n1}

· · ·

This gives us a sequence recursively

n1 < n2 < · · · < nk < · · · ∈ P

Since these are peak points,
ank > ank+1

Thus {ank} is decreasing.

Case 2. Let n1 be the least index that is not a peak point. Since n1 is not a peak point, we can choose
n2 > n1 so that

an1 ≤ an2

Since n2 is not a peak point, then we can choose n3 > n2 so that

an2 ≤ an3

We can proceed recursively, to find that

n1 < n2 < · · · < nk < . . .

Where ank ≤ ank+1

Thus {ank} is non-decreasing.

In either case we have a monotonic sub-sequence.

13.6 Theorem. Bolzano-Weierstrass Theorem Every bounded sequences has a convergent sub-sequence.

Proof. Give {an}, by the Peak Point Lemma {an} has a monotinic subsequence {ank}, which is also bounded.
By the MCT, {ank} is convergent.

Note. BWT is equivalent to MCT which is equivalent to the LUBP.
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Lecture 14, Oct. 7

14.1 Theorem. Bolzano-Weierstrass Theorem Every bounded sequences has a convergent sub-sequence.

14.2 Definition. We say that α ∈ R is a limit point of {an} if there exists a sub-sequence {ank} with
limn→∞ ank = α

LET LIM({an}) = {α ∈ R | α is a limit point of {an}

14.3 Example. an = (−1)n+1 → {1,−1, 1,−1, . . . }

LIM({an}) = {1,−1}

14.4 Example. an = n→ {1, 2, 3, . . . }

LIM({an}) = ∅

Fact If {an} converges with limn→∞ an = L, then LIM({an}) = {L}

14.5 Question. If {an} is such that LIM({an}) contains only one value α, does {an} converges to α?

No. Counterexample:

{an} = {1, 1

2
, 3,

1

4
, 5, . . . }

14.6 Proposition. α is a limit point of {an} if for every (α− ε, α+ ε) contains infinite many terms of the
sequence.

Assume α is a limit point of {an}, then there exists a sub-squence {ank} with ank → α. There exists K0 ∈ N
so that k ≥ K0 → |ank − α| < ε→ ank ∈ (α− ε, α+ ε)

Proof. Assume that ∀ε > 0, (α− ε, α+ ε) contains infinitely many terms of {ab}

For ε = 1 we can find n1 so that an1
∈ (α− 1, α+ 1)

an2 ∈ (α− 1
2 , α+ 1

2 )

Suppose we have n1 < n2 < n3 < · · · < nk with

anj ∈ (α− 1

j
, α+

1

j
)

Since (α− 1
k+1 , α+ 1

k+1 ) contains infinitely many ans. there is nk+1 > nk with ank+1
∈ (α− 1

k+1 , α+ 1
k+1 )

We proceed recursively to get a sub-sequence {ank} with

ank = (α− 1

k
, α+

1

k
)

α− 1

k
< ank < α+

1

k
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By the squeeze theorem, ank → α

14.7 Question.

1. Suppose {an} is bounded and LIM({an}) = {L}, does limn→∞ L?

2. Does there exists {an} with LIM({an}) = {R}

3. For which subsets S of R does there exists {an} with LIM({an}) = S?

Cauchy Sequence

14.8 Question. Is there an intrinsic way to characterize a convergent sequence?

Note. If limn→∞ an = L and if ε > 0 then we can find N0 so that if n ≥ N0m

|an − L| <
ε

2

If n,m ≥ N0, then

|an − am| = |(an − L) + (L− am)|
≤ |an − L|+ |L− am|

<
ε

2
+
ε

2
= ε

14.9 Definition. A sequence {an} is Cauchy is for every ε > 0, then there exists N0 ∈ N so that if
n,m ≥ N0, then

|an − am| < ε

14.10 Proposition. Every convergent sequence is Cauchy

14.11 Question. Does every Cauchy sequence Converges?

14.12 Lemma. Every Cauchy Sequence is bounded.

Proof. Let ε = 1 and choose N0 so that if n,m ≥ N0, then |an − am| < ε

Hence, if n ≥ N0 then
|an − aN0 | < 1→ |an| ≤ |aN0 |+ 1

Let M = max{|a1| , |aq| , . . . , |aN0−1| , |aN0
|+ 1}

14.13 Lemma. Let {an} be Cauchy. Assume that {ank} is such that limk→∞ ank = L, then

lim
n→∞

an = L
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Proof. Let ε > 0. We can find a N0 so that if n,m ≥ N0, then

|an − am| <
ε

2

Let n ≥ N0

|an − L| = |(an − ank) + (ank − L)|
≤ |an − ank |+ |ank − L|

<
ε

2
+
ε

2
= ε

14.14 Theorem. Completeness Property for R Every Cauchy Sequence Converges.

Proof. If an is Cauchy, then an is bounded. By BWT, an has a convergent sub-sequence {ank}. Hence an
converges. (by Lemma 2.)
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Lecture 15, Oct. 17

Women in Pure Math/Math Finance

Lunch/Workshop

Tuesday, Oct.25

12:30-1:20

MC 5417

Limits of Functions

15.1 Example.

f(x) =
x2 − 1

x− 1

domain(f) = {x ∈ R | x 6= 1}.

Note.

f(x) =
(x+ 1)(x− 1)

x− 1
= (x+ 1) if x 6= 1.

What can we say about the values of f(x) as x approaches 1? As x gets closer and closer to 1, f(x) gets
closer and closer to 2. We want to say that 2 is the limit of f(x) as x approaches 1.

15.2 Definition. Heuristic Definition of Limit I If f(x) is defined on an open interval around x = a,
except possibly at x = a, then we say that L is the limit of f(x) as x approaches a if as x gets closer and
closer to a, f(x) gets closer and closer to L

15.3 Definition. Heuristic Definition of Limit II We say that L is the limit of f(x) as x approaches a,
if for every positive tolerance ε > 0, f(x) approximates L with an error less than ε provided that x is close
enough to a, and not equal to a.

15.4 Definition. Formal Definition for a Limit of a Function We say that L is the limit of f(x) as x
approaches a, if for every ε > 0, there exists δ > 0 such that if 0 < |x− a| < δ, then

|f(x)− L| < ε.

In this case we write
lim
x→a

f(x) = L.

15.5 Example. Show that
lim
x→2

3x+ 1 = 7.

Solution. Let ε > 0
|3x+ 1− 7| = |3x− 6| = 3 |x− 2| .

We want |3x+ 1− 7| < ε. We can make this happen if |x− 2| < ε/3

Hence if δ = ε/3, then

0 < |x− 2| < δ = ε/3⇒ |3x+ 1− 7| = 3 |x− 2| < 3ε/3 = ε
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15.6 Example. f(x) = mx+ b,m 6= 0
lim
x→a

f(x) = ma+ b

Solution. Given ε > 0, chooose δ = ε/ |m|

15.7 Example. Show that
lim
x→3

x2 = 9

Solution. ∣∣x2 − 9
∣∣ = |x+ 3| |x− 3|

Let ε > 0. We can assume δ < 1.

If 0 < |x− 3| < 1⇒ x ∈ (2, 4).

Hence |x+ 3| < 7.

Hence for any δ < 1,
0 < |x− 3| < 1⇒

∣∣x2 − 9
∣∣ < 7 |x− 3| .

Let δ = min{1, ε/7}

If 0 < |x− 3| < δ ⇒
∣∣x2 − 9

∣∣ ≤ 7 |x− 3| = ε

15.8 Example. Show that
lim
x→1

x7 + 4x5 − 3x+ 2 = 1

Solution. Don’t want to do this by ε− δ.

15.9 Example.

f(x) =
|x|
x

=

{
1 if x > 0

−1 if x < 0

What is
lim
x→0

f(x)

Solution. limx→0 f(x) does not existst.

Assume limx→0 f(x) = L. Let ε = 1/2. Suppose that δ > 0 is such that 0 < |x− 0| < δ ⇒ |f(x)− L| < ε =
1/2

Let x = δ/2. Then L ∈ (1/2, 3/2). Let x = −δ/2. Then L ∈ (−3/2,−1/2).

L ∈ (1/2, 3/2) ∩ (−3/2,−1/2) = ∅

15.10 Theorem. If limx→a f(x) = L and limx→a f(x) = M , then L = M .

15.11 Theorem. limx→a f(x) = L if and only if whenever {xn} is a sequence with xn → a; xn 6= a we
have that f(xn)→ L
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Lecture 16, Oct. 19

Thursday → Lecture

Friday → Tutorial

Basic Fact about Limits For limn→a f(x) to exist f(x) must be defined in some open interval I containing
x = a, except possibly at x = a.

Sequential Characterization of Limits

16.1 Theorem. Let f(x) be defined in an open interval I containing a, except possibly at x = a. Then the
following are equivalent.

1.
lim
x→a

f(x) = L

2. Whenever {xn} is such that xn → a (xn 6= a) we have f(x)→ L

Proof. Assume that limx→a f(x) = L. Let {xn} be such that xn → a, xn 6= a. Let ε > 0. Then there exists
a δ > 0 such that if 0 < |x− a| < δ, then |f(x)− L| < ε. Since xn → a, we can find a N0 ∈ N so that if
n ≥ N0, then 0 < |xn − a| < δ ⇒ |f(xn)− L| < ε

Conversely, (prove by contrapositive) assume that L is not the limit. Then there exists e0 > 0 such that for
any δ > 0, there exists xδ ∈ (a− δ, a+ δ), xδ 6= a and |f(xδ)− L| ≥ e0. In particular, for each n ∈ N, there
exists xn ∈ (a− 1

n , a+ 1
n ), xn 6= a, such that |f(x)− L| ≥ e0. Hence xn → a, xn 6= a, but {f(xn)} does not

converge to L.

16.2 Theorem. Arithmetic Rules for Limits Assume that limx→a f(x) = L, limx→a g(x) = M then

1. limx→a(cf)(x) = cL

2. limx→a(f + g)(x) = L+M

3. limx→a(fg)(x) = L ·M

4. limx→a(f/g)(x) = L/M if M 6= 0

16.3 Theorem. Squeeze Theorem for Limits Assume that on some open interval I containing x = a
that

f(x) ≤ g(x) ≤ h(x)

for all x ∈ I, except posibly at x = a. If limx→a f(x) = L = limx→a h(x) then

lim
x→a

g(x) = L

Remark. 1. Let p(x) = a0 + a1x+ a2x
2 + · · · then

lim
x→a

p(x) = p(a)
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2. Let f(x) = p(x)/q(x) where p(x), q(x) are polynomials, then

lim
x→a

f(x) =
limx→a p(x)

limx→a q(x)
=
p(a)

q(a)
= f(a)

if q(a) 6= 0.

Note. If limx→a f(x)/g(x) = L exists and limx→a g(x) = 0 then

lim
x→a

f(x) = 0

For f(x) = p(x)/q(x) if q(a) = 0 and p(a) 6= 0 then limx→a f(x) does not exist.

If f(x) = p(x)/q(x), p(x) = q(x) = 0,

p(x) = (x− a)np1(x) p1(a) 6= 0

q(x) = (x− a)mq1(x) q1(a) 6= 0

lim
x→a

p(x)

q(x)
=


p1(a)
p2(a)

if n = m

0 if n > m

does not exist if n < m

16.4 Example.

lim
x→1

x2 − 1

x− 1
= 2

16.5 Example.

f(x) =

{
1 if x ∈ Q
−1 if x ∈ R\Q

Let a ∈ R. What can we say about limx→a f(x)? Exists a sequence in Q that converge to 1, and exists a
sequence in R\Q that converge to -1. Thus the limit does not exist.
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Lecture 17, Oct. 20

Seq Characteriation of Limits

17.1 Theorem. Let f(x) be defined in an open interval I containing a, except possibly at x = a. Then the
following are equivalent.

1. lim
x→a

f(x) = L

2. Whenever {xn} is such that xn → a (xn 6= a) we have f(x)→ L

17.2 Example. lim
x→0

sin(
1

x
) does not exist.

17.3 Example.

g(x) =

{
x sin( 1

x ) if x 6= 0

0 if x = 0

lim
x→0

g(x) = 0. In other words, the limit exists (by using squeeze theorem.)

17.4 Example.

lim
x→0

x2 sin(
1

x
) = 0

17.5 Example.

f(x) =


0 if x ∈ R\Q
1 if x = 0
1
m if x = k

m ∈ Q with gcd(k,m) = 1

Suppose limx→a f(x) exists. Then the limit is 0 (because for every irrational sequence that approaches a, all
element in the irrational sequence is 0.)

17.6 Definition. We say that L is the limit of f(x) from above (from the right) if for every ε > 0 there
exists δ > 0 such that if 0 < x− a < δ, then |f(x)− L| < ε. We write

lim
x→a+

f(x) = L

We say that L is the limit of f(x) from below (from the left) if for every ε > 0 there exists δ > 0 such that
if −δ < x− a < 0, then |f(x)− L| < ε. We write

lim
x→a−

f(x) = L
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Lecture 18, Oct. 24

Midterm: 7:00-8:45

RCH 307 - A-J

RCH 306 - K-O

DWE 3522 - P-W

DWE 3522A - X-Z

Woman in Pure Math/Math Finance Lunch

Tuesday 12:30-1:20 MC5417

18.1 Definition. We say that L is the limit of f(x) from above (from the right) if for every ε > 0 there
exists δ > 0 such that if 0 < x− a < δ, then |f(x)− L| < ε. We write

lim
x→a+

f(x) = L

We say that L is the limit of f(x) from below (from the left) if for every ε > 0 there exists δ > 0 such that
if −δ < x− a < 0, then |f(x)− L| < ε. We write

lim
x→a−

f(x) = L

Note. Both the Arithmetic Rules and Sequential Characterization hold for one-sided limits. As does the
Squeeze Theorem.

limx→a+f(x) = L iff whenever {xn} is such that xn → a, a < xn we have lim
x→∞

f(xn) = L

18.2 Theorem. The following are equivaent

1. limx→a f(x) = L

2. limx→a− f(x) = L and limx→a+ f(x) = L

Proof. 1. Assume that limx→a f(x) = L, Let ε > 0, then there exists δ > 0 such that if 0 < |x− a| < δ
then |f(x)− L| < ε. Hence if 0 < x−a < δ then |f(x)− L| < ε and if 0 < a−x < δ then |f(x)− L| < ε.
Thus limx→a− f(x) = L and limx→a+ f(x) = L.

2. Conversely, assume that limx→a− f(x) = L and limx→a+ f(x) = L. Let ε > 0. We can find δ1 > 0 such
that if 0 < x− a < δ1 then |f(x)− L| < δ and δ2 > 0 such that if 0 < a− x < δ1 then |f(x)− L| < δ.
Let δ = min{δ1, δ2}, hence if 0 < |x− a| < δ then |f(x)− L| < ε.

18.3 Example.

limx→0
|x|
x

18.4 Example.
limx→0+

√
x = 0
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18.5 Definition. A function f(x) is even if f(x) = f(−x) for all x ∈ R (graph is symmetric about x = 0)

Note. If f(x) is even, (assume these limits exist)

lim
x→a+

f(x) = lim
x→−a−

f(x)

lim
x→a−

f(x) = lim
x→−a+

f(x)

In particular, limx→0 f(x) exists iff limx→0+ f(x) exists iff limx→0− f(x) exists.

18.6 Definition. A function f(x) is odd if f(x) = −f(−x) for all x ∈ R (graph is symmetric about (0, 0))

Note. If f(x) is odd, (assume these limits exist)

lim
x→a+

f(x) = − lim
x→−a−

f(x)

lim
x→a−

f(x) = − lim
x→−a+

f(x)

limx→0 f(x) exists iff limx→0+ f(x) = 0 or limx→0− f(x) = 0

18.7 Example. limx→0 sinx and limx→0 cosx

18.8 Example.

lim
x→0

sinx

x
= 1
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Lecture 19, Oct. 26

Written Assignment 3 Due Wed, Nov. 9

19.1 Theorem (Fundamental Trig Limit).

lim
x→0

sinx

x
= 1

Proof. Note that f(x) is even. Hence we need only limx→0+
sin x
x = 1

x

y

R1
x

y

R2
x

y

R3

We have R1 = sinx cosx/2, R2 = x/2 and R3 = sinx/(2 cosx).

Since R1 ≤ R2 ≤ R3, we get

cosx ≤ x

sinx
≤ 1

cosx
.

Hence

cosx ≤ sinx

x
≤ 1

cosx
.

By Squeeze Theorem, limx→0+
sin x
x = 1.

19.2 Example. Find

lim
x→0

sin 3x

sin 4x

Solution.

lim
x→0

sin 3x

sin 4x
= lim
x→0

sin 3x

3
· lim
x→0

4

sin 4x
· 3

4

=1 · 1 · 3

4

=
3

4

19.3 Example. Find

lim
x→0

tanx

x
.
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19.4 Example. Find

lim
x→0

tanπx

sin 2x
.

Asymptotes and Limits at ∞

19.5 Definition. We say that L is the limit as x approaches infinity of f(x) if for every ε > 0, there exists
M > 0 such that if x ≥M , then |f(x)− L| < ε. We write

lim
x→∞

f(x) = L.

19.6 Example. If f(x) = 1/x, then limx→∞ f(x) = 0.

Note. Arithmetic Rules, Sequential Characterization and Squeeze Theorem carry through.

19.7 Theorem (Fundamental Log Limit).

lim
x→∞

ln(x)

x
= 0

Proof.
ln(x)

x
=

2ln(x1/2)

x1/2 · x1/2
=

2ln(x1/2)

x1/2
· 1

x1/2
<

2

x1/2

By squeeze theorem, limx→∞
ln(x)
x = 0

19.8 Example. Find

lim
x→∞

ln(x)

x1/100

Note.

lim
x→∞

ln(x)

xp
= 0 if p > 0

19.9 Example.

lim
x→∞

xp

ex
= 0
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Lecture 20, Oct. 27

20.1 Definition. L = limx→∞ f(x) if for every ε > 0, there exists M > 0 such that x ≥M , then

|f(x)− L| < ε.

20.2 Example. 1. If p > 0, we have limx→∞
1
xp = 0

2. limx→∞
lnx
x = 0

Variants

1. If p > 0, we have limx→0
lnx
xp = 0

2. For all p, limx→0
(lnx)p

x = 0

3. limx→∞
x
ex = 0

20.3 Definition. We say that L is the limit of f(x) as x approaches −∞ if for every ε > 0 there exists
M > 0 such that if x < −M , then |f(x)− L| < ε. We write

lim
x→−∞

f(x) = L.

20.4 Example. By Squeeze Theorem, we have

lim
x→∞

sinx

x
= 0

20.5 Definition (Asymptote). Assume limx→±∞ f(x) = L, then the line y = L is called a horizontal
asymptote of f(x).

x

y

y = L

f(x)

Infinite Limits

20.6 Definition. We say that f(x) approaches ∞ at x = a if for every M > 0 there exists δ > 0 such that
if |x− a| < δ, then f(x) > M . We write

lim
x→a

f(x) =∞

20.7 Definition (Vertical Asymptote). If limx→a+ f(x) = ±∞ or limx→a− f(x) = ±∞, then x = a is called
a vertical asymptote for f(x)
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Lecture 21, Oct. 28

EA 3 due Fri Nov. 4

WA 3 due Wed Nov. 9

21.1 Definition (Continuity). We say that f(x) is continuous at x = a if

1. limx→a f(x) exists

2. limx→a f(x) = f(a)

Equivalently, we say that f(x) is continuous at x = a if for every ε > 0 there exists a δ > 0 such that if
|x− a| < δ, we have |f(x)− f(a)| < ε.

If f(x) is not continuous at x = a we say that f is discontinuous at x = a. We write

D(f) = {a ∈ R | f is discontinuous at x = a}

21.2 Theorem (Sequential Characterization of Limit). Assume that f(x) is defined on an open interval I
containing x = a, Then the following are equivalent:

1. f(x) is continuous at x = a

2. If {xn} with xn → a, we have f(xn)→ f(a)

Proof. Assume that f(x) is continuous at x = a. Let {xn} be such that xn → a. Let ε > 0. Since f(x) is
continuous at x = a, there exists a δ > 0 such that for all |x− a| < δ we have |f(x)− f(a)| < ε. Since {xn}
converges to a, there exists a N0 > 0 such that for all n > N0 we have |xn − a| < δ. Then if n ≥ N0, we
have |f(xn)− f(a)| < ε.

Conversely, for a contraposition, that f(x) is not continuous at x = a. Then there exists an ε0 > 0 such
that for every δ > 0 there exists xδ ∈ (a − δ, a + δ) with |f(xδ)− f(a)| ≥ ε0. In particular, there exists a
xn ∈ (a− 1

n , a+ 1
n ) with |f(xn)− f(a)| > ε0. Hence f(xn) does not converge to f(a).

21.3 Theorem (Arithmetic Rules). Assume f(x) and g(x) are continuous at x = a, then

1. (cf)(x) is continuous at x = a for c ∈ R

2. (f + g)(x) is continuous at x = a

3. (fg)(x) is continuous at x = a

4. (f/g)(x) is continuous at x = a provided that g(a) 6= 0.

21.4 Question. Let f : R → R, g : R → R. Let h(x) = g ◦ f(x) = g(f(x)). Assume that limx→a f(x) = L
and limy→L g(y) = M .

Is limx→a g ◦ f(x) = limx→a h(x) = M?

21.5 Theorem. If f(x) is continuous at x = a, and g(y) is continuous at y = f(a), then h(x) = g ◦ f(x) is
continuous at x = a.

41



Proof. Let xn → a, then f(xn)→ f(a), hence g(f(xn))→ g(f(a))

21.6 Example. Show that sinx is continuous.

Observation:

1. sinx is continuous at x = 0 since limx→0 sinx = 0.

2. If we can show that limh→0 sin(x0 + h) = sinx0 then sinx is continuous at x0.

lim
h→0

sin(x0 + h) = lim
h→0

[sinx0 cosh+ sinh cosx0]

= sinx0

Nature of Discontinuity

21.7 Example.

f(x) =
x2 − 1

x− 1

f(x) is not continuous at x = 1.

Let

g(x) =

{
f(x) if x 6= 1

2 if x = 1

21.8 Definition. If limx→a f(x) = L exists but L 6= f(a), then we say that f(x) has a removable
discontinuity at x = a. Let

g(x) =

{
f(x) if x 6= a

L if x = a

21.9 Definition. If limx→a f(x) does not exists, then x = a is called an essential discontinuity for f(x).

3 Types of Essential Discontinuities

1. Finite jump discontinuity: limx→a+ f(x) = L, limx→a− f(x) = M and L 6= M

2. Vertical Asymptote: limx→a± f(x) = ±∞

3. Oscillatory Discontinuity: limx→0 sin(1/x)
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Lecture 22, Oct. 31

Anton’s tutorial on Tuesady is cancelled.

Aside

Suppose f : R→ R.
D(f) = {x0 ∈ R | f is discontinuous at x0}

Dn(f) = {x0 ∈ R | ∀δ > 0 ∃x, y ∈ (x0 − δ, x0 + δ) |f(x)− f(y)| ≥ 1

n
}

Then if x0 ∈ Dn(f) for some n, then x0 ∈ D(f).

Note.

D(f) =

∞⋃
n=1

Dn(f)

22.1 Definition. A set A ⊂ R is called Fσ if

A =

∞⋃
n=1

Fn

where each Fn is closed.

22.2 Example. Let Q = {r1, r2, r3, · · · }

Q =

∞⋃
n=1

{rn} → Fσ

22.3 Definition. A set A ⊂ R is called Gδ if

A =

∞⋂
n=1

Un

where each Un is open.

Note. 1. {0} =
⋃∞
n=1(− 1

n ,
1
n )

2. A is Gδ iff Ac is Fσ

3. D(f) is Fσ → D(f)c is Gδ

Note. Q = {r1, r2, r3, · · · }

Uk =

∞⋃
n=1

(rn −
1

2n+k+1
, rn +

1

2n+k+1
) ⊃ Q

So is it true that
∞⋂
k=1

Uk = Q

Continuity on an Interval
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22.4 Question. Is f(x) =
√
x continuous at x = 0?

22.5 Definition (Continuity on an Interval). We say that f(x) is continuous on the open interval (a, b) if
f(x) is continuous at each x0 ∈ (a, b)

We say that f(x) is continuous on the closed interval [a, b] if f(x) is continuous at (a, b) and limx→a+ f(x) =
f(a) and limx→b− f(x) = f(b).

Similarly for (a, b], (a,∞), · · ·

22.6 Theorem (Sequential Characterization for Continuity on [a,b]). Let f : [a, b]→ R, then the followings
are equivalent:

1. f is continuous at [a, b]

2. if {xn} ⊂ [a, b] with xn → x0 ∈ [a, b] then f(xn)→ f(x0)

Remark. Given S ⊂ R, S 6= ∅, we say that f : S → R is continuous on S is whenever {xn} is a sequence in
S with xn → x0 ∈ S we have f(xn)→ f(x0)

mathmode inline: x = 0 x = 0 display:
x = 0

x = 0

x = 0

x = 0 (1)
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Lecture 23, Nov. 2

23.1 Theorem (Intermediate Value Thm (IVT)). If f(x) is continuous on [a, b], f(a) < 0 and f(b) > 0,
then there exists c ∈ (a, b) with f(c) = 0.

Proof. Let E = {x ∈ [a, b] | f(x) ≤ 0}. Then E 6= ∅ since a ∈ E. Since E is bounded, it has a lub which
we call c (Note: c ∈ [a, b]). We claim f(c) = 0 We can find xn ∈ E with xn → c. By the Sequential
Characterization of Continuity f(xn) → f(c). Since f(xn) ≤ 0 for all n, f(c) ≤ 0. Observe that c < B for
each n ∈ N. We choose yn ∈ [a, b] so that c < yn ≤ b and |c− yn| < 1

n . Since yn → c, we have f(yn)→ f(c).
But f(yn) > 0 for all n, so f(c) ≥ 0. Thus f(c) = 0.

Note. A similar statement holds if f(a) > 0 and f(b) < 0.

23.2 Corollary (Intermediate Value Theorem II). If f(x) is continuous on [a, b], and if f(a) < α < f(b)
or f(b) < α < f(a), then there exists c ∈ (a, b) with f(c) = α.

Proof. Let g(x) = f(x)− α and apply the theorem 23.1.

23.3 Question. Assume f : [a, b] → R is 1-1. What can we say about f if f(x) is also continuous? Is f
strictly monotonic?

23.4 Definition. We say that f(x) : [a, b] is non-decreasing on [a, b] if whenever x, y ∈ [a, b] with x < y,
we have f(x) ≤ f(y). We say that f is strictly increasing if whenever x, y ∈ [a, b] with x < y we have
f(x) < f(y). Similarly we could define non-increasing and strictly decreasing.

f is monotonic on [a, b] if it is either non-decreasing or non-increasing. f is strictly monotonic if it is strictly
increasing or strictly decreasing.

23.5 Corollary.

TO BE FINISHED
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Lecture 24, Nov. 4

24.1 Theorem (Intermediate Value Thm (IVT)). If f(x) is continuous on [a, b] and f(a)f(b) < 0, then
there exists c ∈ (a, b) with f(c) = 0.

24.2 Example. Show that
f(x) = x2 + x− 3

has a root on [0, 4].

Solution. Observation:

1. f(x) is continuous.

2. f(0) = −3 < 0

3. f(4) > 0

By the theorem 24.1 there exists c ∈ [0, 4] with f(c) = 0.

24.3 Question. How do we find c?

Solution. Binary Search Algorithm.

Set Up f(x) is continuous. We want to solve f(x) = 0.

Step 1 Find a < b with f(a)f(b) < 0.

Algorithm

1. a1 = a, b1 = b

2. If |b− a| < 2ε, let d = a+b
2 , stop

3. If f(d) = 0, stop

4. If f(a)f(d) < 0, let a1 = a1, b1 = d, goto 1.

5. If f(d)f(b) < 0, let a1 = d, b1 = b1, goto 2

24.4 Example. Show that there exists c ∈ [0, π2 ] with cos c = c

Solution. Let f(x) = cosx− x, which is continuous on [0, π2 ]. Observe that f(0) > 0 and f(π2 ) < 0. By the
theorem 24.1 there exists c with f(c) = 0 = cos c− c.
24.5 Theorem (Extreme Value Theorem). If f(x) is continuous on [a, b], then there exists c, d ∈ [a, b] such
that

f(c) ≤ f(x) ≤ f(d)

for all x ∈ [a, b].

Proof. First we show that f(x) is bounded. Suppose it is not bounded. Then for each n ∈ N, there exists
xn ∈ [a, b] with f(xn) ≥ n. By the BWT, {xn} has a convergent sub-sequence {xnk} with xnk → x0 ∈ [a, b].
Since f is continuous, f(xnk) → f(x0). But f(xnk) ≥ nk → ∞, which is impossible. Thus f([a, b]) is
bounded.

Let M = lub(f([a, b])). For each n ∈ N choose ym ∈ [a, b] with M − 1
n < f(yn) ≤ M . By the BWT, {yn}

has a convergent sub-sequence {ynk} with ynk → d ∈ [a, b]. Hence f(d) = limk→∞ f(xnk) = M
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Lecture 25, Nov. 7

25.1 Theorem (Extreme Value Theorem). If f(x) is continuous on [a, b], then there exists c, d ∈ [a, b] such
that

f(c) ≤ f(x) ≤ f(d)

for all x ∈ [a, b].

Uniform Continuity

25.2 Question. Assume that f(x) is continuous on some interval I. Let ε > 0. Does there exists a single
δ > 0 such that for every a ∈ I, we have if |x− a| < δ, x ∈ I, then |f(x)− f(a)| < δ?

25.3 Definition (Uniform Conitnuity). We say that f(x) is uniformly continuous on S ⊂ R if for every ε,
there exists a δ > 0 such that if |x− y| < δ, x, y ∈ S, then |f(x)− f(y)| < δ.

25.4 Theorem (Sequential Characterization for Uniform Continuity). Let f : S → R. Then the followings
are equivalent

1. f(x) is continuous on S

2. If {xn}, {yn} ⊂ S with limx→∞ |xn − yn| = 0, then limn→∞ |f(xn)− f(yn)| = 0.

Proof. Assume that f(x) is uniformly continuous on S. Let ε > 0 and let {xn}, {yn} ⊂ S with |xn − yn| → 0.
Choose δ > 0 so that if x, y ∈ S, |x− y| < δ then |f(x)− f(y)| < ε. We can pick N0 ∈ N so that if n ≥ N0,
then |xn − yn| < δ. It follows that if n ≥ N0, then |f(xn)− f(yN )| < ε. Hence limx→∞ |f(xn)− f(yn)| = 0.

Conversely, assume that 1 fails (f(x) is not uniformly continuous on S). Then there exists ε0 > 0 such that
for every δ > 0 we can find xδ, yδ ∈ S with |xδ − yδ| < δ, but |f(xδ)− f(yδ)| ≥ ε0. Let δ = 1/n, and xδ = xn,
yδ = yn. This gives us {xn}, {yn} ⊂ S, with |xn − yn| < 1/n→ 0, but limx→∞ |f(xn)− f(yn)| 6= 0

25.5 Theorem. If f(x) is continuous on [a, b], then f(x) is uniformly continuous on [a, b].

Proof. Assume that f(x) is not uniformly continuous on [a, b], then there exists ε0 and {xn}, {yn} ⊂ S with
|xn − yn| → 0, but |f(xn)− f(yn)| ≥ ε0 for all n.

By the BWT {xn} has a sub-sequence {xnk} with xnk → a ∈ S. Since |xnk − ynk | → 0, then ynk → a. But
then limx→∞ |f(xnk)− f(ynk)| = 0, which is impossible.
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Lecture 26, Nov. 9

26.1 Theorem. If f(x) is continuous on [a, b], then f is uniformly continuous.

Basic Facts about Uniform Continuity

1. If f is uniformly continuous on S ⊂ R and if T ⊆ S then f is uniformly continuous on T .

2. If f is uniformly continuous on S and if {xn} ⊂ S is Cauchy then {f(xn)} is Cauchy.

3. If f is uniformly continuous on (a, b), then limx→a+ f(x) exists and limx→b− f(x) exists.

4. f is uniformly continuous on (a, b) iff there exists F : [a, b]→ R such that F is continuous on [a, b] and
F (x) = f(x) for all x ∈ (a, b).

5. if f(x) is uniformly continuous on (a, b), then f((a, b)) is bounded.

Derivatives

26.2 Definition (Differentiable). We say that f is differentiable at x = a if

lim
x→a

f(x)− f(a)

x− a
exists. In this case, we write

f ′(x) = lim
x→a

f(x)− f(a)

x− a
and we call f ′(x) the derivative of f at x = a.

26.3 Definition (Tangent Line). Assume that f ′(x) exists. Then the line with slope f ′(x) passing through
(a, f(a)) is called the tangent line to f(x) at x = a.

y = f(a) + f ′(a(x− a))

26.4 Definition (Alternative Definition).

f ′(a) = lim
h→0

f(a+ h)− f(a)

h

26.5 Example. f(x) = cosx, find f ′(0)

Solution.

f ′(0) = lim
h→0

cosh− cos 0

h

= lim
h→0

cosh− 1

h

= lim
h→0

(cosh− 1)(cosh+ 1)

h(cosx+ 1)

= lim
h→0

cos2 h− 1

h(cosh+ 1)

= lim
h→0

− sinh

h

sinh

(cosh+ 1)

=0
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26.6 Example. f(x) = sinx, find f ′(a)

Solution.

f ′(a) = lim
h→0

sin(a+ h)− sin(a)

h

= lim
h→0

sin a cosh+ cos a sinh− sin a

h

= lim
h→0

sin a
cosh− 1

h
+ cos a

sinh

h

= cos a

26.7 Theorem. If f(x) is differentiable at x = a, then f(x) is continuous at x = a.

Proof. Since limx→a(f(x)− f(a))/(x− a) exists and limx→a x− a = 0, we have limx→a f(x)− f(a) = 0⇐⇒
limx→a f(x) = f(a).

26.8 Example.

g(x) =

{
x sin 1

x if x 6= 0

0 if x = 0

is g(x) differentiable at x = 0?

26.9 Example.

h(x) =

{
x2 sin 1

x if x 6= 0

0 if x = 0

is h(x) differentiable at x = 0?
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Lecture 27, Nov. 10

27.1 Theorem (Arithmetic Rules for Differentiation). Assume that f(x), g(x) are differentiable at x = a.

1. If f(x) = c for all x, then f ′(a) = 0

2. (f + g)(x) is differentiable at x = a with (f + g)′(a) = f ′(a) + g′(a)

3. (fg)(x) is differentiable at x = a with (fg)′(a) = f ′(a)g(a) + g′(a)f(a)

4. Let h(x) = 1
f(x) . Then h(x) is differentiable at x = a if f(a) 6= 0 and

h′(a) =
−f ′(a)

f(a)

5. If h(x) = f(x)
g(x) then h(x) is differentiable at x = a, if g(a) 6= 0 and

h′(a) =
f ′(a)g(a)− g′(a)f(a)

g2(a)

Proof.

3 Consider

lim
x→a

(fg)(x)− (fg)(a)

x− a

lim
x→a

(fg)(x)− (fg)(a)

x− a

= lim
x→a

f(x)g(x)− f(a)g(x) + f(a)g(x)− f(a)g(a)

x− a

= lim
x→a

g(x)
f(x)− f(a)

x− a
+ lim
x→a

f(a)
g(x)− g(a)

x− a

= lim
x→a

g(x) lim
x→a

f(x)− f(a)

x− a
+ f(a)g′(a)

=g(a)f ′(a) + f(a)g′(a)

4 Consider

lim
x→a

1/f(x)− 1/f(a)

x− a
.

lim
x→a

1/f(x)− 1/f(a)

x− a

= lim
x→a

f(a)− f(x)

x− a
· 1

f(a)f(x)

=
−f ′(a)

f2(a)
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5 Combine 3 and 4.

Linear Approximation

Note. Assume that f(x) is differentiable at x = a. Then

f ′(a) = lim
x→a

f(x)− f(a)

x− a

If x u a, then

f ′(a) u
f(x)− f(a)

x− a
⇒f ′(a)(x− a) u f(x)− f(a)

⇒f(x) u f ′(a)(x− a) + f(a)

27.2 Definition. Let f(x) be differentiable at x = a. We define the linear approximation to f(x) at x = a
to be the function

Lfa(x) = f(a) + f ′(a)(x− a)

27.3 Theorem (Properties of Linear Approximation). Lfa(x) has the following properties

1. Lfa(a) = f(a)

2. (Lfa)′(x) = f ′(a)

3. If h(x) = mx+ b and h(x) satisfies 1) and 2) then h(x) = Lfa(a)

4. Lfa(a) u f(x) if x u a

5. The graph of Lfa(a) is the tangent line to graph of f(x) at x = a

27.4 Example. Consider f(x) = sinx.

Lsin x
0 = sin 0 + cos 0(x− 0) = x

27.5 Example. Consider f(x) = ex, we have f(0) = 1 and f ′(0) = 1. Then

Le
x

0 = f(0) + f ′(0)(x− 0) = 1 + x

27.6 Example. If f(x) = e−u
2

,

e−u
2

u 1− u2

if u is small.
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Lecture 28, Nov. 11

Chain Rule Assume f : I → R, with I open and containing x = a, g : J → R, with J open and containing
f(a) with f(I) ⊂ J . Assume that f is differentiable at x = a and g is differentiable at y = f(a). Let
h(x) : I → R be h(x) = g ◦ g(x) = g(f(x)).

28.1 Question. Is h(x) differentiable at x = a and if so what is h′(a)?

We know that if x u a, then
f(x) u Lfa(x)

and if y u f(a) then
g(y) = Lgf(a)(y).

If x u a, then f(x) u f(a), hence h(x) = g(f(x)) u g(Lfa(x)) u Lgf(a)(L
f
a(x)).

The equation

Lgf(a) ◦ L
f
a(x)

=Lgf(a)(f(a) + f ′(a)(x− a))

=g(f(a)) + g′(f(a))(f(a) + f ′(a)(x− a)− f(a))

=g(f(a)) + g′(f(a))f ′(a)(x− a)

=h(a) + h′(a)(x− a)

=Lha(x)

holds if an only if h′(x) = g′(f(a))f ′(a).

28.2 Theorem (Chain Rule). If f : I → R is an open interval containing x = a, g : J → R is an open
interval containing y = f(a), f(I) ⊂ J , J is differentiable at x = a, g is differentiable at y = f(a), then if
h : I → R is given by h(x) = g ◦ f(x), then h is differentiable at x = a with h′(a) = g′(f(a))f ′(a).

False proof.

h′(a) = lim
x→a

h(x)− g(a)

x− a

= lim
x→a

g(f(x))− g(f(a))

x− a

= lim
x→a

g(f(x))− g(f(a))

f(x)− f(a)
· f(x)− f(a)

x− a

= lim
y→f(a)

g(y)− g(f(a))

y − f(a)
· lim
x→a

f(x)− f(a)

x− a
=g′(f(a)f ′(a)

This is false because f(x) might equal f(a), and thus you multiplied 0
0 .

Real Proof. Let

ϕ(y) =

{
g(y)−g(f(a))
y−f(a) if y 6= f(a)

g′(f(a)) if y = f(a)
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Note that ϕ(y) is continuous.

Observe that g(y)− g(f(a)) = ϕ(y)[y − f(a)] for all y ∈ J , even y = f(a). Then now,

h′(a) = lim
x→a

h(x)− g(a)

x− a

= lim
x→a

g(f(x))− g(f(a))

x− a

= lim
x→a

ϕ(f(x))[f(x)− f(a)]

x− a

= lim
x→a

ϕ(f(x)) · lim
x→a

f(x)− f(a)

x− a
=ϕ(f(a)) · f ′(a)

=g′(f(a))f ′(a)

28.3 Example. Consider h(x) = cosx = sin(x+ π/2)
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Lecture 29, Nov. 14

29.1 Definition. Assume that f(x) is differentiable at each x0 in an interval I. We define f ′ : I → R by

f ′(x) = lim
h→0

f(x0 + h)− f(x0)

h

. f ′ is called the derivative (function) of f on I.

29.2 Example. f(x) = sinx, f ′(x) = cosx on R

Notation.

1. y = f(x)→ y′ will denote f ′(x)

2.
dy

dx
= f ′(x)

3.
d

dy
f(x) = f ′(x)

If f ′(x) is differentiable at x0 ∈ R, then we call

(f ′)′(x0) = lim
h→0

f ′(x0 + h)− f ′(h)

h

the second derivative of f at x = x0. We denote this by f ′′(x0).

In general if f is twice differentiable on I, we write f ′′(x) to represent the second derivative.

f ′′′(x)→ third derivative.

f (n)(x) denotes the n-th derivative.

29.3 Theorem (More on Linear Approximation). If f(x) is differentiable at x = a, and if

La(x) = f(a) + f ′(a)(x− a)

then La(x) u f(x) if x u a

29.4 Theorem (Error in Linear Approximation).

Error = |f(x)− La(x)|

The error is effected by

1. Distance of x to a.

2. The larger |f ′′(x)| the larger the error may be.

Both 1 and 2 hold in general most of the time but not always.
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29.5 Theorem (Newton’s Method). Pick a1.

Let

an+1 = an −
f(an)

f ′(an)

Remark.

1. If f ′(c) 6= 0, then there exists δ > 0 such that if a1 ∈ (c− δ, c+ δ) then an → c

2. When the method work, the convergence is generally very fast. In general, the convergence is “quadratic”
in nature. Roughly speaking this means the number of decimal places of accuracy will at least double
with each iteration.

3. It can fail.

29.6 Example (Heron’s Method). Solve x2 − a = 0.

Solution. Pick a1.

an+1 = an −
f(an)

f ′(an)
= an −

a2n − a
2an

=
1

2
(an +

a

an
)
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Lecture 30, Nov. 16

Maxima, Minima and Critical Points

30.1 Definition (Global Maximum and Minimum). Let f be defined on an interval I. We say that, d ∈ I
is a global maximum for f on I if

f(x) ≤ f(d) for all x ∈ I
and f(d) is the global maximum value.

Similarly we define the global minimum and global minimum value.

30.2 Example. f(x) = x on (0, 1) has no global maximum or minimum on (0, 1).

30.3 Definition (Local Maximum and Minimum). We say that c ks a local maximum for f(x) if there
exists an open interval (a, b) containing c with

f(x) ≤ f(c) for all x ∈ (a, b)

Similarly we define the local minimum.

30.4 Theorem (The Might-be-on-the-exam Theorem).

1. Assume that f(x) has a local maximum at x = c. If f(x) is differentiable at x = c then f ′(c) = 0

2. Assume that f(x) has a local minimum at x = c. If f(x) is differentiable at x = c then f ′(c) = 0.
(Might be on the exam)

Proof.

1. Since x = c is a local maximum for f(x) there exists δ > 0 such that if c − δ < x < c + δ, then
f(x) ≤ f(c). Then if c− δ < x < c,

f(x)− f(c)

x− c
≥ 0

and if c < x < c+ δ,
f(x)− f(c)

x− c
≤ 0

Thus
f(x)− f(c)

x− c
= 0

Hence f ′(c) = 0.

30.5 Definition (Critical Point). Assume that f is defined on an open interval I. We call c ∈ I a critical
point for f if either

1. f ′(c) = 0

2. f is not differentiable at x = c.

Note. Given f continuous on [a.b], then the global max (min) will be at

1. either x = a or x = b or

2. a critical point in (a, b).
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Lecture 31, Nov. 17

Inverse Function Theorem

Note. If f is 1 − 1, we get f : X → range(f) ⊂ Y = {y ∈ Y | y = f(x) for some x}. If f is 1 − 1 and onto
its range, we can define g : range(f)→ x by g(y) = x if and only if f(x) = y.

31.1 Definition. We say that f is invertible on A ⊂ R if f is 1− 1 on A. In this case, we define the inverse
of f on A by

g(y) = x ⇐⇒ y = f(x) for x ∈ A

Note. Geometrically the inverse function is the reflection of the original function through y = x.

31.2 Example. f(x) = mx+ b is always invertible if m 6= 0. The inverse function is

g(y) =
1

m
x− b

m

Observation. We have

Lgf(a)(x) =
1

f ′(a)
(x− f(a))

g′(f(a)) =
1

f ′(a)

31.3 Definition. We say that f(x) is increasing (strictly increasing) on an interval I if whenever x1, x2 ∈ I
with x1 < x2, we have f(x1) ≤ f(x2) (f(x1) < f(x2)).

Similarly we define “decreasing (strictly decreasing)”.

We say that f is monotonic on I if one of these holds.

Basic Facts.

1. If f(x) is strictly increasing or decreasing on I, then f is 1− 1 on I, and hence invertible on I.

2. If f is continuous on I and 1− 1 then f is either strictly increasing or strictly decreasing.

3. Assume that f(x) is increasing on [a, b]. Let c ∈ (a, b). Claim that limx→a− f(x) and limx→a+ f(x)
exists with limx→a− f(x) ≤ limx→a+ f(x)

31.4 Theorem. Assume that f(x) is increasing on [a, b], then the following are equivalent

1. f(x) is continuous on [a, b]

2. f([a, b]) = [f(a), f(b)]
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Lecture 32, Nov. 18

32.1 Theorem. If f : [a, b]→ R is increasing, then TFAE

1. f(x) is continuous on [a, b]

2. f([a, b]) = [f(a), f(b)]

32.2 Corollary. If f : [a, b] is strictly monotonic with inverse g : f([a, b]) → [a, b] then f is continuous on
[a, b] if and only if g is continuous on f([a, b]).

32.3 Theorem (Inverse Function Theorem). Assume that if f : [a, b]→ R is strictly monotonic with inverse
g : f([a, b]) → R. If f is continuous on [a, b], differentiable on [a, b], and if x0 ∈ (a, b) with f ′(x0) 6= 0 with
y0 = f(x0), then g is differentiable at y0 with

g′(y0) =
1

f ′(x0)
=

1

f ′(g(y0))
.

Proof. Let {yn} ⊂ f([a, b]) with yn → y0, yn 6= y0. Let xn = g(yn) ∈ [a, b]. Since f and g are continuous,
g(yn)→ g(y0)⇒ xn → x0. Then

lim
x→∞

g(yn)− g(y0)

yn − y0
= lim
n→∞

xn − x0
f(xn − f(x0))

= lim
n→∞

1

f ′(x0)
.

By the Sequenctial Characterization of limits g′(x) = limn→∞
1

f ′(x0)

32.4 Example. f(x) = x3 and g(x) = x1/3.
f ′(0) = 0

g′(x) =

{
1

3x2/3 if x 6= 0

does not exist if x = 0

32.5 Example (Inverse Trig Functions).

1. arcsinx

f(x) = sinx on [−π/2, π/2], f(x) is strictly increasing ⇒ invertible on [−π/2, π/2].

sin([−π/2, π/2]) = [−1, 1].

Define g(x) = arcsin(y) on [−1, 1] by g(y) = x iff sinx = y for x ∈ [−π/2, π/2]

If g(y) = arcsin y. if y0 ∈ (−1, 1),

g′(y0) =
1

f ′(x0)
=

1

cosx
.

where f(x) = sinx and x0 = arcsin y0 and y0 = sinx0, x0 ∈ (−π/2, π/2). Since cosx0 =
√

1− sin2 x0 =√
1− y20 ,

g′(y0) =
1√

1− y20
.

Note. sin(arcsinx) = x holds for x ∈ [−1, 1] while arcsin(sinx) = x Holds iff x ∈ [−π/2, π/2]
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2. arctanx

For each y ∈ R define g(y) = arctan y by g(y) = x iff tanx = y for x ∈ (−π/2, π/2). That is,

arctan y : R→ (−π
2
,
π

2
)

with tan(arctan y) = y for y ∈ R
Note that

d

dx
tanx = sec2 x =

1

cos2 x

By the Inverse Function Theorem,

g′(y) =
1

f ′(x)
=

1

sec2 x
=

1

sec2(arctan y)
=

1

1 + tan2(arctan y)
=

1

1 + y1

3. arccos y cos(x) is 1-1 on [0, π]

Note. cos([0, π]) = [−1, 1]

For each y ∈ [−1, 1] define g(y) = x iff y = cosx for x ∈ [0, π]

g′(y) =
1

−
√

1− y2
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Lecture 33, Nov. 21

Exponential and Logarithmic Functions

33.1 Definition (ax). Let a > 0 We have

1. a0 = 1

2. an = a · a · a · · · a if n ∈ N

3. an/m = m
√
an

4. if α ∈ R, α > 0, let aα = limrn→α a
rn where rn ⊂ Q, rn ≥ 0

5. If α < 0, let aα = 1
a−α

33.2 Theorem (Properties of ax).

1. ax+y = axay

2. ax
y

= axy

3. f(x) = ax is differentiable and f ′(x) = f ′(0)f(x) = f ′(0)ax

4. There exist a unique base “e” for which if f(x) = ex then f ′(0) = 1.

Note. The derivative of f(x) = ax at x = 0 varies continuously with a. It also increase with a.

33.3 Theorem (The function ex). Properties

1. Domain ex = R

2. Range ex = R+ = y ∈ R | y ≥ 0

3. ex is strictly increasing and hence invertible.

4. f ′(x) = f ′(0)f(x) = 1 · ex = ex (Inverse for f(x) = ex)

33.4 Definition (Natural log). We define g(y) = ln y : R+ → R by g(y) = x if and only if ex = y

From the Inverse Function Theorem,

g′(y0) =
1

f ′(x0)
=

1

ex0
=

1

y0

Thus if g(y) = ln y then g′(y) = 1
y .

Note. If a > 0, then a = eln a, then ax = eln a
x

= ex ln a. If h(x) = ax,then the Chain Rule shows that

h′(x) =
d

dx
ex ln a = ln aex ln a = ln a · ax

In particular, h′(0) = ln a = lim
h→0

an − 1

h
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Note. If a 6= 1, a > 0, then f(x) = ax is 1-1 from R onto R+

33.5 Definition. g(y) = loga y : R+ → R by g(y) = x iff ax = y.

loga y = x⇔ ax = y ⇒ ex ln a = y ⇒ ln(exln a) = ln y and x ln a = ln y, then x = ln y
ln a .

Hence, loga(y) =
ln y

ln a
⇒ d

dx
(loga(x) =

d

dx
(
lnx

ln a
) =

1

ln ax

33.6 Example (On the final exam). Let f(x) = xx = (eln x)x = ex ln x

Domain f = R+

Note. If g(x) = x lnx

g′(x) = x
x + lnx = 1 + lnx = 0⇒ x = 1

e

f ′(x) = ex ln x d

dx
x lnx = (1 + lnx)ex ln x = (1 + lnx)xx

33.7 Example.
g(x) = xsin x = eln x sin x

33.8 Example (Mean Value Theorem). Question: Suppose that a car travels a distance of 110km in exactly
1hr. If the posted speed limit on the road is 100km/h. Can you prove that the car was speeding at some
point.
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Lecture 34, Oct. 23

34.1 Theorem (Rolle’s Theorem). Assume that f is continuous on [a, b] and differentiable on (a, b). Assume
that f(a) = f(b). Then there exists c ∈ (a, b) with f ′(c) = 0.

Proof. If f(x) is constant on [a, b], then if c ∈ (a, b), then f ′(c) = 0. If f(x) is not constant on [a, b], then
f(x) attains either its maximum or its minimum on some point c ∈ (a, b). In either case, f ′(c) = 0.

34.2 Theorem (Mean Value Theorem). Assume that f(x) is continuous on [a, b] and differentiable on (a, b),
then there exists c ∈ (a, b) with

f ′(c) =
f(b)− f(a)

b− a
.

Proof. Let

g(x) = f(a) +
f(b)− f(a)

b− a
(x− a).

Let h(x) = f(x)− g(x). Then h(a) = h(b) = 0. Since h(x) is continuous on [a, b] and differentiable on (a, b)
with h(a) = h(b), by Rolle’s Theorem, there exists c ∈ (a, b) with

0 = h′(c) = f ′(c)− f(b)− f(a)

b− a
.

Thus

f ′(c) =
f(b)− f(a)

b− a
.

34.3 Proposition. Let f(x) be continuous on an interval I. Assume that f ′(x) = 0 for each x ∈ I. Then
there exists C ∈ R such that f(x) = C for all x ∈ I.

Proof. Let x0 ∈ I. Let f(x0) = C.Let x ∈ I, x 6= x0. Then the MVT holds on the interval between x0 and
x. There exists d ∈ I between x0 and x with

f(x)− f(x0)

x− x0
= f ′(d) = 0

Thus f(x) = f(x0) = C.

34.4 Definition (Antiderivatives). Given a function f(x) we say that F (x) is an antiderivative of f(x) if
F ′(x) = f(x).

Note. Suppose F (x), G(x) are antiderivatives of f(x). Then F ′(x) = f(x) = G′(x). Let H(x) = F (x)−G(x).
Then we have H ′(x) = 0.

For any f(x), if F (x) is antiderivative of f(x), then all antiderivatives are of the form G(x) = F (x) + C for
some C.

34.5 Theorem (Increasing Function Theorem). Assume that f(x) is continuous on [a, b] and differentiable
on (a, b) with f ′(x) ≥ 0 (f ′(x) > 0) for all x ∈ (a, b), then f(x) is (strictly) increasing on (a, b).
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Proof. Let x < y ∈ [a, b]. By the MVT, there exists x < c < y with

f ′(c) =
f(y)− f(x)

y − x

Since f ′(c) ≥ 0, we get f(y) ≥ f(x).
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Lecture 35, Nov. 24

35.1 Theorem. If f(x) is continuous on [a, b] and differentiable on (a, b) with m ≤ f ′(x) ≤ M on (a, b),
then for each x ∈ [a, b] we have

f(a) +m(x− a) ≤ f(x) ≤ f(a) +M(x− a)

Proof. Pick x ∈ (a, b]. Then the Mean Value Theorem holds on [a, x]. So there exists a c ∈ (a, x) with

f(x)− f(a)

x− a
= f ′(c).

Hence

m ≤ f(x)− f(a)

x− a
≤M.

Then
f(a) +m(x− a) ≤ f(x) ≤ f(a) +M(x− a).

35.2 Theorem. Assume that f(x) is differentiable on an interval I with |f ′(x)| ≤ M for all x ∈ I. Then
f(x) is uniformly continuous on I.

Proof. Let ε > 0. Let x, y ∈ I with x 6= y. Then by the Mean Value Theorem,∣∣∣∣f(x)− f(y)

x− y

∣∣∣∣ = |f ′(c)| ≤M

Then
|f(x)− f(y)| ≤M |x− y|

Let δ = ε/M . If |x− y| < δ then |f(x)− f(y)| < ε. Thus f(x) is uniformly continuous.

35.3 Question. Assume f(x) is uniformly continuous on I and differentiable on I. Is f ′(x) bounded on I?
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Lecture 36, Nov. 25

36.1 Theorem (Increasing Function Theorem). Assume that f(x) is continuous on [a, b] and differentiable
on (a, b) with f ′(x) ≥ 0 (f ′(x) > 0) for all x ∈ (a, b), then f(x) is (strictly) increasing on (a, b).

36.2 Theorem (Comparison Theorem). Assume that f and g are differentiable on (a, b) and continuous
on [a, b]. If f(a) = g(a) and if f ′(x) < g′(x) for all x ∈ (a, b), then f(x) < g(x) for all x ∈ (a, b].

Classifying Critical Points

36.3 Theorem (First Derivative Test). Assume that f ′(c) = 0

1. Assume that there exists an open interval (a, b) containing c with f ′(x) ≥ 0 for all a < x < c and
f ′(x) ≤ 0 for all c < x < b, then x = c is a local maximum.

2. Assume that there exists an open interval (a, b) containing c with f ′(x) ≤ 0 for all a < x < c and
f ′(x) ≥ 0 for all c < x < b, then x = c is a local minimum.

Proof. Let a < x0 < c. Then Mean Value Theorem holds on [x0, c]. There exists d1 ∈ (x0, c) with

f(x0)− f(c)

x0 − c
= f ′(d1) ≥ 0.

Then f(x0) ≤ f(c) since x0 − c < 0. Similarly we prove the other parts of the theorem.

36.4 Theorem (Second Derivative Test). Assume that f ′(c) = 0 and that f ′′(x) is continuous at x = c.

1. If f ′′(c) > 0, then x = c is a local minimum

2. If f ′′(c) < 0, then x = c is a local maximum

Proof. Assume that f ′(c) = 0 and that f ′′(x) is continuous at x = c.

1. Assume f ′′(x) > 0. Since f ′′(x) is continuous at x = c, there is an open interval (c− δ, c+ δ) on which
f ′′(x) > 0. Hence f ′(x) is strictly increasing on (c−δ, c+δ). But f ′(c) < 0, then f ′(x) < 0 on (c−δ, c)
and f ′(c) > 0 on (c, c+ δ). Then we apply the First Derivative Test.

36.5 Definition (Concavity). We say that a function f(x) which is continuous on an interval I is concave
up on I if for every a < b, a, b ∈ I, we have

h(x) = f(a) +
f(b)− f(a)

b− a
− f(x) ≥ 0 on (a, b)

We say that a function f(x) is concave down on I if for every a < b, a, b ∈ I, we have

h(x) = f(a) +
f(b)− f(a)

b− a
− f(x) ≤ 0 on (a, b)

36.6 Theorem (Concavity Theorem).

1. Assume that f ′′(x) > 0 for all x ∈ I then f(x) is concave up on I.

2. Assume that f ′′(x) < 0 for all x ∈ I then f(x) is concave down on I.
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Lecture 37, Nov. 28

37.1 Definition (Concavity). We say that a function f(x) which is continuous on an interval I is concave
up on I if for every a < b, a, b ∈ I, we have

h(x) = f(a) +
f(b)− f(a)

b− a
− f(x) ≥ 0 on (a, b)

We say that a function f(x) is concave down on I if for every a < b, a, b ∈ I, we have

h(x) = f(a) +
f(b)− f(a)

b− a
− f(x) ≤ 0 on (a, b)

37.2 Theorem (Concavity Theorem).

1. Assume that f ′′(x) > 0 for all x ∈ I then f(x) is concave up on I.

2. Assume that f ′′(x) < 0 for all x ∈ I then f(x) is concave down on I.

Proof. Assume that f ′′(x) ≥ 0 on I. Let a < b, a, b ∈ I. Consider h(x) = f(x) − g(x) where g(x) =
f(a) + (f(b)− f(a))(x− a)/(b− a). Since h(a) = h(b) = 0, by Rolle’s Theorem there exists a c ∈ (a, b) with
h′(c) = 0. Moreover, h′′(x) = f ′′(x) > 0 on (a, b). Then f ′(x) is increasing on (a, b). Hence h′(x) < 0 on
(a, c) and h′(x) > 0 on (c, b). Hence c is a local minimum. Moreover this is the only point in (a, b) with
h′(c) = 0.

37.3 Theorem. Assume that f : I → R is such that f ′′(x) > 0 on I. Then f(x) is concave upwards on I.
If f ′′(x) < 0 on I. Then f(x) is concave downwards on I.

37.4 Definition. Assume that f(x) is continuous on (a, b) with c ∈ (a, b). We say that c is an inflection
point for f(x) if there exist λ > 0 such that either i) f(x) concave up on (c − λ, c) and concave down on
(c, c+ λ) or ii) f(x) concave down on (c− λ, c) and concave up on (c, c+ λ)

37.5 Proposition. Assume that f ′′(x) exists on (a, b). If c ∈ (a, b) is an inflection point, then f ′′(c) = 0.

37.6 Theorem (Cauchy’s Mean Value Theorem). Assume that f(x) and g(x) are continuous on [a, b],
differentiable on (a, b) with g′(x) 6= 0 for all x ∈ (a, b). Then there exists c ∈ (a, b) with

f(b)− f(a)

b− a
=
f ′(c)

g′(c)

Proof. Observe that g′(x) 6= 0 on (a, b) so g(b) 6= g(a). Let

h(x) =
f(b)− f(a)

g(b)− g(a)
(f(x)− g(a))− (f(x)− f(a))

Then since h(a) = h(b) = 0, by Rolle’s Theorem there exists c ∈ (a, b) with

h′(c) = 0 =
f(b)− f(a)

g(b)− g(a)
(f(x)− g(a))g′(c)− f ′(c)

then
f(b)− f(a)

b− a
=
f ′(c)

g′(c)
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37.7 Definition. Assume that limx→a f(x) = limx→a g(x) = 0. We call limx→a
f(x)
g(x) on indeterminate form

of type 0
0 If limx→a f(x) = ±∞ = limx→0 g(x). Then limx→a

f(x)
g(x) is type ∞∞

37.8 Theorem (L’Hospital’s Rule Version 0/0). Assume that f(x) and g(x) are differentiable on (a, b)
where a ∈ R ∪ {−∞} and b ∈ R ∪ {∞}. Assume also that g(x) 6= 0, g′(x) 6= 0 on (a, b). Assume that
limx→a+ f(x) = 0 = limx→a+ g(x), then

1. if lim
x→a+

f ′(x)

g′(x)
= L, then lim

x→a+
f(x)

g(x)
= L.

2. if lim
x→a+

f ′(x)

g′(x)
= ±∞, then lim

x→a+
f(x)

g(x)
= ±∞.

Assume that limx→b− f(x) = 0 = limx→b− g(x), then

3 if lim
x→b−

f ′(x)

g′(x)
= L, then lim

x→b−
f(x)

g(x)
= L.

4 if lim
x→b−

f ′(x)

g′(x)
= ±∞, then lim

x→b−
f(x)

g(x)
= ±∞.

Proof. Assume that

lim
x→a+

f ′(x)

g′(x)
= L

Let ε > 0. There exists a β such that if a < x < b, then∣∣∣∣f ′(x)

g′(x)
− L

∣∣∣∣ < ε

2

Let a < α < β1 < β. Then by the Cauchy Mean Value Theorem∣∣∣∣f(β1)− f(α)

g(β1)− g(α)
− L

∣∣∣∣ =

∣∣∣∣f ′(cαβ1
)

g′(cαβ1
)
− L

∣∣∣∣
Hence ∣∣∣∣f(β1)

g(β1)
− L

∣∣∣∣ = lim
α→a+

∣∣∣∣f(β1)− f(α)

g(β1)− g(α)
− L

∣∣∣∣ ≤ ε

2
< ε
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Lecture 38, Nov. 30

38.1 Example.

lim
x→0

ex − 1

x

38.2 Example.

lim
x→0

ex − cosx

x

38.3 Example.

lim
x→0

x

ex

38.4 Example.
lim
x→0+

x lnx

38.5 Example.
lim
x→0+

xx

38.6 Example.
lim
x→0+

xsin x

38.7 Definition. Recall: If f(x) is differentiable at x = a, then Lfa(x) = f(a) + f ′(a)(x− a) is the unique

degree 1 (or less) polynomial with 1) Lfa(a) = f(a) 2) L
f ′(a)
a = f ′(a)

Question: Assume that f ′′(a) exists, does there exist a polynomial p(x) = a0 + a1(x− a) + a2(x− a)2 with
p(a) = f(a), p′(a) = f ′(a), and p′′(a) = f ′′(a)?

Note:

p(a) = a0, p
′(x) = a1 + 2a2(x− a)

p′(a) = a1 ⇒ Le+ a1 = f ′(a)

p′′(x) = 2a2 ⇒ 2a2 = f ′′(a)

p(x) = f(a) + f ′(a)(x− a) + f ′′(a)(x− a)2

p(x) =
f(a)

0!
+
f ′(a)

1!
(x− a) +

f ′′(a)

2!
(x− a)2

Question: Assume that f
(n)
(a) exists. Then is there a polynomial of the form Pn,a(x) = a0 + a1(x− a) + ...+

an(x− a)n where P
(k)
n,0 (a) = f

(k)
(a) for k = 0, 1, 2, ..., n?

The answer is YES, in fact (we define 0! = 1):

Pn,a(x) =
f(a)

0!
+
f ′(a)

1!
(x− a) +

f ′′(a)

2!
(x− a)2 + ...+

f (n)(a)

n!
(x− a)n

Pn,a(x) =

n∑
k=1

f (k)(a)

k!
(x− a)k
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38.8 Definition (n-th degree Taylor Polynomial). Given a function f(x) with f (n)(a). We define the n-th
degree Taylor Polynomial for f(x) centered at x = a to be

Pn,a(x) =
f(a)

0!
+
f ′(a)

1!
(x− a) +

f ′′(a)

2!
(x− a)2 + ...+

f (n)(a)

n!
(x− a)n

Pn,a(x) =

n∑
k=0

f (k)(a)

k!
(x− a)k

Observation:

1. P0,a(x) = f(a)

2. P1,a(x) = Lfa(x)

38.9 Example. f(x) = ex, a = 0

f ′(x) = ex = f ′′(x) = f ′′′(x) = ... = f (n)(x)

fk(0) = e0 = 1

P0,0(x) = e0 = 1

P1,0(x) = f(0) + f ′(0)x = 1 + x

P2,0(x) = 1 + x+
f ′′(a)

2!
x2 = 1 + x+

x2

2!

Pn,0(x) = 1 + x+
x2

2!
+
x3

3!
+
xn

n!

Strategy: If x u a, f(x) u Pn,0(x) (Hope: As n increases the approximation is more accurate)

Question: Can we quantify the error? i.e. How big is f ′(x)− Pn,0(x)?

38.10 Definition.
Rn,a(x) = f(x)− Pn,a(x)

is the error in using the Taylor Polynomial to approximate f(x) near x = a.

38.11 Theorem (Taylor’s Theorem). Assume that f (n+1)(x) exists in an open interval I containing x = a
For each x ∈ I(x 6= a) there exist cx strictly between x and a, such that

Rn,a(x) = f(x)− Pn,a(x) =
f (x+1)(x)

(n+ 1)!
(x− a)x+1

38.12 Example.

n = 1

R1,a(x) = f(x)− P1,a(x)

= f(x)− Lfa(x)

=
f ′′(x)

2!
(x− a)2
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Lecture 39, Dec. 1

Proof of Taylor’s Theorem. If x 6= a, let M be such that Rn,a = f(x) = Pn,a inf = M(x− a)n+1.

Let F (t) = f(t) + f ′(t) + f ′′(t)(x− t) + ...

F ′(t) = f ′(t) + (−f ′(t) + f ′′(t)(x− a)) + ...

F ′(t) = f(n+1)(t)
n! (x− t)n −M(n+ 1)(x− t)n

F ′(c) = 0⇒ f(n+1)

n! −M(n+ 1)(x− t)n = M = f(n+1)(c)
(n+1)! (Some stuff missing here)

Observation:

1. When n = 0, Taylor Thm is the MVT.

2. When n = 1, P1,a(x) = Lfa(a)⇒
∣∣f(x)− Lfa(x)

∣∣ = f ′′(a)
2! (x− a)2

39.1 Example (sinx). Same on the modulo on Learn.

Some stuff missing here.
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Lecture 40, Dec. 2

40.1 Example. Let

f(x) =

{
sin x
x if x 6= 0

1 if x = 0

Solution. From Taylor’s Theorem we get

|sinh− h| ≤
∣∣h3∣∣

6

Then ∣∣∣∣ sinhh − 1

∣∣∣∣ ≤
∣∣h3∣∣

6

Then ∣∣∣∣∣ sinhh − 1

h
− 0

∣∣∣∣∣ ≤ |h|6
By Squeeze Theorem

lim
x→0

sinh
h − 1

h
− 0 = f ′(0) = 0

40.2 Theorem (Approximation Theorem). Assume that there exists a δ > 0 such that
∣∣f (n+1)(x)

∣∣ ≤M for
all x ∈ (a− δ, a+ δ), then for each x ∈ (a− δ, a+ δ) we have

|f(x)− Pn,a(x)| ≤ M

(n+ 1)!

∣∣(x− a)n+1
∣∣

40.3 Definition (Big-O notation). Let a ∈ R. Given f, g we say that f(x) = O(g(x)) as x approaches a if
there exists 0 < δ ≤ 1 with

|f(x)| ≤M |f(x)| for all x ∈ (a− δ, a+ δ)

except possibly at x = a.

40.4 Theorem. If There exists a 0 < δ ≤ 1 such that f (n+1)(x) is continuous on [−δ, δ], then

f(x)− Pn,a(x) = O(xn+1)

and we write f(x) = Pn,a(x) +O(xn+1).

Proof. Since f (n+1)(x) is continuous on [−δ, δ], the Extreme Value Theorem show that there exists M with∣∣f (n+1)(x)
∣∣ ≤M for all x ∈ [−δ, δ]. Hence by the Approximation Theorem,

|f(x)− Pn,a(x)| ≤ M

(n+ 1)!

∣∣xn+1
∣∣

Then f(x) = Pn,a(x) +O(xn+1).

40.5 Theorem (Arithmetic Rules for Big-O). Assume that f = O(xn), g = O(xm).

1. cf(x) = O(xn)
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2. f(x) + g(x) = O(xmin(m,n))

3. f(x) · g(x) = O(xm+n)

4. xk · f(x) = O(xn+k)

5. (f(x))k = O(xnk)

Proof. On [−δ, δ], |f(x)| ≤M1 |xn|, |g(x)| ≤M2 |xn| Then

|f(x) + g(x)| ≤ |f(x)|+|g(x)| ≤M1 |xn|+M2 |xm| ≤M1

∣∣∣xmin(m,n)
∣∣∣+M2

∣∣∣xmin(m,n)
∣∣∣ = (M1+M2)

∣∣∣xmin(m,n)
∣∣∣

40.6 Lemma. Let p(x) = a0 + a1x+ · · · anxn. Assume that p(x) = O(xn+1), then p(x) = 0.

Proof. Prove by induction.

40.7 Theorem. Assume that f (n+1)(x) is continuous on [−δ, δ]. If p(x) = a0 + a1x+ · · · anxn is such that
f(x) = p(x) +O(xn+1), then p(x) = Pn,0(x).

Proof.

p(x)− Pn,a(x) =(p(x)− f(x)) + (f(x)− Pn,0(x))

=O(xm+1) +O(xm+1)

=O(xm+1)

Then by the lemma, we have p(x)− Pn,a(x) = 0.
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Tutorial 1, Sept. 15

Office Hours M 9:30-10:45
W 1:45-2:30
Th 2:30-4:00
F 9:30-10:45

Functions

41.1 Definition. A function is a rule that assigns to each element x in a set X a single value y in a set Y .

Notation.
f : X → Y

where X is the domain of f and Y -is the codomain of f .

41.2 Example. X = R and Y = R,
y = f(x) = x2

41.3 Definition. Given f : X → Y , the range of f is

ran(f) = {y ∈ Y | y = f(x) for some x ∈ X}

We say that f : X → Y is onto if ran(f) = codomain(f).

41.4 Example. f(x) = x3, f : R→ R. f is onto.

f : X → Y is 1-1 if whenever x1, x2 ∈ X with x1 6= x2, then f(x1) 6= f(x2)

If f is 1-1 and onto, for each y ∈ Y we define

g(y) = x ⇐⇒ y = f(x)

This gives us a function g : Y → X which is called the inverse of f and denoted by f−1

Properties Suppose f : X → Y , g : Y → Z, we get

g ◦ f = g(f(x))

and
g ◦ f : X → Z

Suppose that f : X → Y is 1-1 and onto with inverse g,

g ◦ f(x) = x
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Tutorial 2, Sept. 22

Additional Office Hours

• Tuesday 1:30-2:30 MC 5413

• Friday 2:30-3:30 MC 5417
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Tutorial 3, Oct. 14

a) WA2 due Monday 2:30

b) Midterm on Monday Oct. 24

43.1 Definition. A sequence {an} is Cauchy if for every ε > 0 there exists an N0inN so that if n,m ≥ N0,
then

|an − am| < ε.

43.2 Question. Let {an} be such that

lim
n→∞

an+1 − an = 0.

Is {an} Cauchy?

Solution. No. e.g.

an =

n∑
k=1

1

k
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